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Abstract 25 

“Pavlovian” or “motivational” biases are the phenomenon that the valence of prospective outcomes 26 

modulates action invigoration: Reward prospect invigorates action, while punishment prospect 27 

suppresses it. While effects of the valence of prospective outcomes are well established, it is unclear 28 

how the magnitude of outcomes modulates these biases. In this pre-registered study (N = 55), we 29 

manipulated stake magnitude (high vs. low) in an orthogonalized Motivational Go/ NoGo Task. We 30 

tested whether higher stakes (a) strengthen biases or (b) elicit cognitive control recruitment, enhancing 31 

the suppression of biases in motivationally incongruent conditions. Confirmatory tests yielded that high 32 

stakes slowed down responses independently of the Pavlovian biases, especially in motivationally 33 

incongruent conditions, without affecting response selection. Reinforcement-learning drift-diffusion 34 

models (RL-DDMs) fit to the data suggested that this effect was best captured by stakes prolonging the 35 

non-decision time, but not affecting the response threshold as in typical speed-accuracy tradeoffs. In 36 

sum, these results suggest that high stakes result in a slowing-down of the decision process without 37 

affecting the expression of Pavlovian biases in behavior. We speculate that this slowing under high 38 

stakes might reflect heightened cognitive control, which is however ineffectively used, or reflect 39 

positive conditioned suppression, i.e., the suppression of locomotion by high-value immanent rewards, 40 

as phenomenon previously observed in rodents that might also exist in humans. Pavlovian biases and 41 

slowing under high stakes seem to arise in parallel to each other. 42 
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Introduction 50 

The behavior of humans and other animals reflects the interplay of multiple, partly independent 51 

decision-making systems (Collins & Cockburn, 2020; Daw, Niv, & Dayan, 2005; Dickinson & Balleine, 52 

1994; Metcalfe & Mischel, 1999; Shiffrin & Schneider, 1977; Strack & Deutsch, 2004). One such 53 

system is the Pavlovian system which rigidly triggers response invigoration to the prospect of reward 54 

and response inhibition to the threat of punishment (Boureau & Dayan, 2011; Dayan, Niv, Seymour, & 55 

Daw, 2006; O’Doherty, Cockburn, & Pauli, 2017). Its actions are visible in the form or “Pavlovian” or 56 

“motivational” biases, which have been proposed to underlie many seemingly maladaptive behaviors 57 

in humans and other animals (Dayan et al., 2006). 58 

Pavlovian mechanisms might explain seemingly “irrational” behaviors in animals, including 59 

the facilitation of instrumental approach behavior by unrelated, but reward-predictive cues (Estes, 1943, 60 

1948; LoLordo, McMillan, & Riley, 1974; Lovibond, 1983; Rescorla & Solomon, 1967; Schwartz, 61 

1976), or the development of “sign-tracking” behavior, i.e., reward-predictive cues distracting an 62 

animal from a focal task (Hearst & Jenkins, 1974; Jenkins & Moore, 1973). Recently, sign-tracking has 63 

been suggested to constitute a phenomenon shared across species, including humans (Colaizzi et al., 64 

2020; Garofalo & di Pellegrino, 2015), which might contribute to the etiology and maintenance of drug 65 

abuse (Flagel & Robinson, 2017; Flagel, Watson, Robinson, & Akil, 2007). A better understanding of 66 

when Pavlovian biases occur and how they interact with other systems regulating behavior promises 67 

insights into the development and maintenance of psychiatry conditions such as alcohol or drug abuse 68 

(Chen, Garbusow, Sebold, Zech, et al., 2022; Schad et al., 2020). 69 

There are several proposed accounts for the ecological rationality of Pavlovian biases, i.e., 70 

under which circumstances strong biases are adaptive. Pavlovian control is generally contrasted against 71 

instrumental control, i.e. the ability to flexibly adapt behavior to different response-outcome 72 

contingencies. There is agreement that Pavlovian control is both faster and cheaper, but at the same 73 

time more rigid than instrumental control (Boureau & Dayan, 2011; Dayan et al., 2006). It might thus 74 

be particularly adaptive in situations in which instrumental control yields no benefits beyond Pavlovian 75 

control, e.g. in novel, unfamiliar, or uncontrollable environments (Dorfman & Gershman, 2019). 76 
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Another idea is Pavlovian control acts as an “emergency action control system” in high-stakes situations 77 

that are critical for survival (O’Doherty et al., 2017), such as when facing a lethal predator, in which it 78 

overrides instrumental systems. Yet another idea is that Pavlovian and instrumental control do not 79 

compete, but can act in synergy, with instrumental control recruiting Pavlovian control to achieve 80 

responses that are faster and more robust to inference (Algermissen & den Ouden, 2023). Hence, besides 81 

selecting an appropriate action, strong Pavlovian biases could provide advantages in speed or caution. 82 

However, none of these accounts specifies how behavior is guided in the presence of rewards 83 

and/or threats of different magnitudes. Several arguments suggest that these biases should be sensitive 84 

to the magnitude of these prospective outcomes (or “stakes”). Agents frequently face situations in which 85 

they have to select amongst multiple rewards of varying magnitude. It could be beneficial if Pavlovian 86 

biases would automatically direct the agent towards the largest reward. Particularly, on its way to 87 

attaining the largest reward, an agent might have to ignore smaller, more proximal rewards. Hence, 88 

Pavlovian biases should not be triggered by any reward, but distinguish between smaller rewards on the 89 

one hand, which might be arbitrated against other goals an agent pursues using deliberational processes, 90 

and sufficiently large rewards on the other hand, which escape such an arbitration and instead elicit 91 

unconditional approach behavior. Similar, the danger level of potential threats (or “threat magnitude”) 92 

needs to be considered: A human hunter who freezes upon the sight of a lion might have a competitive 93 

advantage over someone who continues to forage. However, a hunter who freezes upon the sight of a 94 

small spider might have a disadvantage compared to other foragers, demonstrating again that Pavlovian 95 

biases can only be adaptive if they take the magnitude of rewards and threats into account and ignore 96 

smaller outcomes in service of pursuing larger outcomes. 97 

Evidence that the strength of Pavlovian biases varies with stake magnitude has been mixed so 98 

far. A few studies using Pavlovian-to-Instrumental Transfer (PIT) tasks, in which task-irrelevant cues 99 

associated with rewards/ punishments are presented in the background, have observed slight increases 100 

in response rates and somewhat faster reaction times for higher rewards (Algermissen & den Ouden, 101 

2023; Schad et al., 2020) as well as decreased response rates and slower reaction times for larger 102 

punishments (Geurts, Huys, den Ouden, & Cools, 2013b, 2013a). However, many other studies have 103 
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not observed such modulations (Chen, Garbusow, Sebold, Kuitunen-Paul, et al., 2022; Chen, 104 

Schlagenhauf, et al., 2022; Garbusow et al., 2019, 2016; Sommer et al., 2020, 2017). Other tasks varying 105 

the reward on offer, specifically versions of the monetary incentive delay task (Knutson, Adams, Fong, 106 

& Hommer, 2001; Luo, Ainslie, Giragosian, & Monterosso, 2009) have observed faster reaction times 107 

to larger rewards. A study using a virtual predation game found slower reaction times under larger 108 

threats (Bach, 2015). However, in the latter studies, it remained unclear whether reward-induced 109 

invigoration/ punishment-induced slowing followed from automatic, Pavlovian effects or rather 110 

participants’ deliberate strategies, reflecting their beliefs about which behavior was conducive to reward 111 

attainment/ punishment avoidance (Mahlberg et al., 2021; Westbrook, Frank, & Cools, 2021). To 112 

disentangle automatic from strategic effects, there must be task conditions that incentivize the 113 

suppression of Pavlovian biases—a unique feature of the Motivational Go/NoGo Task. 114 

Pavlovian biases can most unequivocally be measured with the (orthogonalized) Motivational 115 

Go/NoGo Task. In this task, individuals learn through trial-and-error to perform either a Go or NoGo 116 

response to a number of different cues. For some cues ( “Win cues”), they can gain points for correct 117 

performance (with no change in score for incorrect performance), while for other cues (“Avoid” cues), 118 

they can lose points for incorrect performance (with no change in score for correct performance; Fig. 119 

1A-C). In this task, humans typically show higher accuracy in performing active “Go” actions to Win 120 

cues than passive “NoGo” actions to Win cues, while the reverse is true for Avoid cues, reflecting the 121 

influence of Pavlovian biases (Guitart-Masip, Duzel, Dolan, & Dayan, 2014; Guitart-Masip et al., 2012; 122 

Swart et al., 2017). Beyond differences in accuracy, humans also show faster responses to Win than 123 

Avoid cues. In order to perform well on this task, participants need to detect when Pavlovian biases are 124 

incongruent with the required response and inhibit their biases on these trials (Cavanagh, Eisenberg, 125 

Guitart-Masip, Huys, & Frank, 2013; Swart et al., 2018). Unlike PIT tasks, every cue signaling whether 126 

to perform a Go or NoGo response has a fixed valence, either providing the chance to win or to lose 127 

points, typically eliciting stronger biases than tasks in which task-irrelevant cues are presented in the 128 

background. 129 
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While Pavlovian biases might lead to adaptive behavior in a number of situations, their 130 

influence becomes most apparent in situations in which they conflict with optimal behavior: Sometimes, 131 

agents have to wait to secure a reward, e.g., in situations akin to the Marshmallow Test (Mischel & 132 

Ebbesen, 1970), or they have to take active steps to prevent or fight a threat, e.g., in exposure therapy 133 

to treat arachnophobia. In such circumstances, agents have to suppress Pavlovian biases, a requirement 134 

animals usually struggle with (Breland & Breland, 1961; Hershberger, 1986) and even humans only 135 

imperfectly master (Cavanagh et al., 2013; Swart et al., 2018). The ability to suppress automatic, 136 

unwanted action tendencies is usually regarded to require cognitive control (Cohen, 2017). For several 137 

decades, cognitive control has been seen as a limited resource or ability that can fail, leading to action 138 

slips and undesired behavior (Hofmann, Friese, & Strack, 2009). In contrast, more recent perspectives, 139 

most notably the expected value of control theory (EVC) (Lieder, Shenhav, Musslick, & Griffiths, 2018; 140 

Shenhav, Botvinick, & Cohen, 2013) have suggested that cognitive control is not inherently limited, 141 

but follows from a cost-benefit trade-off that weighs the potential benefits of exerting additional control 142 

against the costs of doing so. In line with this idea, a number of studies using conflict tasks, such as the 143 

Stroop, Simon, or Flanker task, have shown that compatibility effects—taken to reflect cognitive control 144 

limitations—become smaller when participants are offered financial incentives for recruiting control 145 

(Boehler, Hopf, Stoppel, & Krebs, 2012; Chiew & Braver, 2014; Dixon & Christoff, 2012; Fröber & 146 

Dreisbach, 2016; Krebs, Boehler, & Woldorff, 2010). From this perspective, higher stakes should 147 

motivate an agent to exert additional cognitive control in order to suppress biases in situations in which 148 

those are maladaptive. In these situations, notably, the EVC theory makes predictions directly opposite 149 

to the above-described case of high stakes strengthening biases: while ecological considerations suggest 150 

that higher stakes should lead to stronger biases, EVC predicts more control and thus weaker biases. To 151 

suppress biases, additional time might be required to recruit control processes, leading to higher 152 

accuracy on behalf of longer RTs, i.e., a speed-accuracy tradeoff. In contrast, in situations in which 153 

biases lead to adaptive behavior, EVC predicts no effect of stakes on behavior. 154 

 In this study, we directly tested these two opposing predictions against each other. We collected 155 

data from 55 participants performing the motivational Go/NoGo Task in which the magnitude of stakes 156 
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(high or low) was manipulated on a trial-by-trial basis. Following the first hypothesis that higher stakes 157 

drive stronger Pavlovian biases, we predicted an interaction between congruency and the stakes 158 

magnitude, with a stronger congruency effect (indicative of the Pavlovian bias) and higher performance 159 

on congruent, but lower performance on incongruent trials under high compared to low stakes (Fig. 160 

1D). In contrast, following the EVC hypothesis, we predicted an interaction effect in the opposite 161 

direction, with a weaker congruency effect (reflecting cognitive control recruitment) and selectively 162 

higher performance on incongruent trials (but slower RTs) under high compared to low stakes (Fig. 163 

1E).  164 

 165 

 

Figure 1. Task and behavioral predictions. A. Time course of each trial. Participant see one of four cues (“gems”) and have to decide whether 
to respond to it with a button press (“Go”) or not (“NoGo”). On half of the trials, the cue is surrounded by a red circle, indicating that stakes 
are five times as high and points gained/ lost in this trial will be multiplied with 5. After a variable interval, participants receive an outcome 
(increase in points, no change, or decrease in points). B. Task conditions. Half of the cues are “Win” cues for which points can be gained (or 
no change in the point score occurs), while the other half are “Avoid” cues for which points can be lost (or no change in the point score occurs). 
Orthogonal to cue valence is the correct action required for each cue, which is either Go or NoGo. C. Feedback given cue valence and response 
accuracy. For Win cues, correct responses mostly lead to an increase in points (+10 or +50, depending on whether the trial was high or low 
stakes), but occasionally lead to no change in score (0). For Avoid cues, correct responses mostly lead to no change in score (0), while 
occasionally lead to a loss of points (-10 or -50, depending on whether the trial was high or low stakes). For incorrect responses, probabilities 
are reversed. D. Prediction from a “bias strengthening” hypothesis. High stakes strengthen biases, leading to higher accuracy for bias-congruent 
cues (for which required action and valence match), but lower accuracy for bias-incongruent cues. E. Prediction from the “motivation for 
control” hypothesis. High stakes motivate cognitive control, which inhibits biases when they are incongruent with the required action, leading 
to higher accuracy selectively for bias-incongruent cues (for which the bias-triggered response has to be inhibited). 
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Methods 166 

Participants and Exclusion Criteria 167 

Fifty-five human participants (Mage = 22.31, SDage = 2.21, range 18–29; 42 women, 13 men; 47 168 

right-handed, 8 left-handed) participated in an experiment of about 45 minutes. The study design, 169 

hypotheses, and analysis plan were pre-registered on OSF under https://osf.io/ue397. Individuals who 170 

were 18–30 years old, spoke and understood English, and did not suffer from colorblindness were 171 

recruited via the SONA Radboud Research Participation System of Radboud University. Their data 172 

were excluded from all analyses for two (pre-registered) reasons: (a) guessing the hypotheses of the 173 

experiment on the first question of the debriefing, which was not the case for any participant; (b) 174 

performance not significantly above chance (tested by using required action to predict performed action 175 

with a logistic regression; only participants with p < .05 were included), which was the case for one 176 

participant. All the results presented in the main text are thus based on a final sample of N = 54. See the 177 

Supplementary Material S03 for results based on all 55 participants, which led to identical conclusions. 178 

This research was approved by the local ethics committee of the Faculty of Social Sciences at Radboud 179 

University (proposal no. ECSW-2018-171) in accordance with the Declaration of Helsinki. 180 

The sample size was not based on a power analysis, but on lab availability for this project (three 181 

weeks). This study was conducted as part of final year thesis projects, which received special lab access 182 

in this period. The final sample size of N = 54 was larger than previous studies investigating Pavlovian 183 

biases with the same task (Algermissen, Swart, Scheeringa, Cools, & den Ouden, 2022; Swart et al., 184 

2018) and more than twice as large as comparable studies investigating the effect of incentives on 185 

cognitive control recruitment (Chiew & Braver, 2016; Krebs et al., 2010). A post-hoc sensitivity power 186 

analysis yielded that, given 54 participants providing 320 trials, thus 17,280 trials in total, assuming an 187 

intra-cluster coefficient of 0.043 for responses and 0.094 for RTs (estimated from the data), the effective 188 

sample size was n = 5,281 for responses and n = 2,877 for RTs, which allowed us to detect effects of β 189 

> .039 (standardized regression coefficient) for responses and β > .052 for RTs with 80% power (Aarts, 190 

Verhage, Veenvliet, Dolan, & van der Sluis, 2014). 191 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 27, 2023. ; https://doi.org/10.1101/2023.12.26.573351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573351
http://creativecommons.org/licenses/by/4.0/


STAKE MAGNITUDE IN PAVLOVIAN BIASES  9 
 

Procedure 192 

Participants completed a single experimental session that lasted about 45 minutes. After 193 

providing informed consent, participants received computerized instructions and performed four 194 

practice trials for each of the four task conditions. Afterwards, they completed 320 trials of the 195 

Motivational Go/NoGo Task. After the task, participants performed the V5-D MESA Digit Span Test 196 

measuring forward and backward digit span (Fitzpatrick et al., 2015) and filled in the non-planning 197 

subscale of the Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995) and the neuroticism sub-198 

scale of the Big Five Aspects Scales (DeYoung, Quilty, & Peterson, 2007). These measures were part 199 

of final year thesis projects and not of focal interest (see the pre-registration); results are reported in 200 

Supplementary Material S05. Finally, participants went through a funnel debriefing asking them about 201 

their guesses of the hypothesis of the study, whether they used specific strategies to perform the task, 202 

whether they found the task more or less difficult to perform on high stakes trials, and if so, whether 203 

they had an explanation of why this was the case. At the end, they received course credit for participation 204 

as well as a small extra candy reward when they scored more than 960 points (equivalent to 67% 205 

accuracy across trials, equivalence unknown to participants), which was announced in the instructions. 206 

Task 207 

 Participants completed 320 trials (80 per condition; 40 each with high and low stakes 208 

respectively) of the Motivational Go/ NoGo learning task. Each trial started with one of four abstract 209 

geometric cues presented for 1,300 ms (Fig. 1A). The assignment of cues to task conditions was 210 

counterbalanced across participants. Participants needed to learn from trial-and-error about the cue 211 

valence, i.e., whether the cue was a Win cue (point gain for correct responses; no change in point score 212 

for incorrect responses) or an Avoid cue (no change in point score for correct responses; point loss for 213 

incorrect responses), and the required action, i.e., whether the correct response was Go (a key press of 214 

the space bar) or NoGo (no action; Fig. 1B). Participants could perform Go responses while the cue was 215 

on the screen. In 50% of trials, the cue was surrounded by a dark red circle (RGB [255, 0, 0]), signaling 216 

the chance to win or avoid losing 50 points (high stakes condition). On all other trials, 10 points could 217 

be won or lost (low stakes condition). After a variable inter-stimulus interval of 500–900 ms (uniform 218 
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distribution in steps of 100 ms), numerical feedback was presented for 700 ms (+10/+50 in green font 219 

for point wins, -10/-50 in red font for point losses; 000 in grey font for no change in point score). 220 

Feedback was probabilistic such that correct responses were followed by favorable outcomes (point win 221 

for Win cues, no change for Avoid cues) on only 80% of trials, while on the other 20% of trials, 222 

participants received unfavorable outcomes (no change for Win cues, point loss for Avoid cues; Fig. 223 

1C). These probabilities were reversed for incorrect responses. Probabilistic feedback was used to make 224 

learning more difficult and induce a slower learning curve. Trials ended with a variable inter-trial 225 

interval of 1,300–1,700 ms (uniform distribution in steps of 100 ms). 226 

 The task was administered in four blocks of 80 trials each. Each block featured a distinct set of 227 

four cues for which participants had to learn the correct response. Probabilistic feedback and renewal 228 

of the cue set were used to slow down learning, given previous findings that biases disappear when 229 

accuracy approaches 100% (Swart et al., 2017). 230 

Data Analysis 231 

Data Preprocessing 232 

(Trials with) RTs faster than 300 ms were excluded from all analyses as those were assumed to 233 

be too fast to reflect processing of the cue. This was the case for 103 out of 17,600 trials (per participant: 234 

M = 1.91, SD = 5.89, range 0–41). See Supplementary Material S02 for results using all reaction times 235 

from all trials. 236 

Mixed-effects Regression Models 237 

We tested hypotheses using mixed-effects linear regression (function lmer) and logistic 238 

regression (function glmer) as implemented in the package lme4 in R (Bates, Mächler, Bolker, & 239 

Walker, 2015). We used generalized linear models with a binomial link function (i.e., logistic 240 

regression) for binary dependent variables such as accuracy (correct vs. incorrect) and response (Go vs. 241 

NoGo), and linear models for continuous variables such as RTs. We used zero-sum coding for 242 

categorical independent variables. All continuous dependent and independent variables were 243 

standardized such that regression weights can be interpreted as standardized regression coefficients. All 244 

regression models contained a fixed intercept. We added all possible random intercepts, slopes, and 245 
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correlations to achieve a maximal random effects structure (Barr, Levy, Scheepers, & Tily, 2013). P-246 

values were computed using likelihood ratio tests with the package afex (Singmann, Bolker, Westfall, 247 

& Aust, 2018). We considered p-values smaller than α = 0.05 as statistically significant.  248 

Evidence for absence of an effect 249 

We plot the condition means for each participant and provide confidence intervals for every 250 

effect. Every possible point estimate of an effect that would fall outside the estimated confidence 251 

interval can be rejected at a level of α = 0.05. 252 

Computational modeling of responses and reaction times 253 

Combining reinforcement learning with a drift-diffusion choice rule. A class of 254 

computational models that allows to jointly model both responses and reaction times are so called 255 

“evidence accumulation” or “sequential sampling” models such as the drift-diffusion model (DDM) 256 

(Ratcliff, 1978). These models formalize a decision process in which evidence for two (or more) 257 

response options is accumulated until a fixed threshold, and a response is elicited upon reaching this 258 

threshold. The process is captured through four parameters (Wabersich & Vandekerckhove, 2014): the 259 

drift rate δ, reflecting the speed with which evidence is accumulated; the decision threshold α, 260 

describing the distance of the threshold from the starting point; the starting point bias β, reflecting if the 261 

accumulation process starts in the middle between both bounds (β = 0.5) or closer to one of the 262 

boundaries, reflecting an overall response bias; and the non-decision time τ; capturing the duration of 263 

all perceptual or motor processes that contribute to RT, but are not part of the decision process itself. 264 

Typically, DDMs aim to explain choices when response requirements given a certain visual 265 

input are clear to the participant. However, in the current study, participants learn the correct response 266 

for each cue over time, leading to progressively faster and more accurate responses. Recent advances 267 

in computational modeling propose that it is possible to combine drift-diffusion models with a 268 

reinforcement learning (RL) process, yielding a reinforcement-learning drift-diffusion model (RL-269 

DDM) (Fontanesi, Gluth, Spektor, & Rieskamp, 2019; Miletić, Boag, & Forstmann, 2020; Pedersen, 270 

Frank, & Biele, 2017). We employed a simple Rescorla-Wagner model which uses outcomes r (+1 for 271 
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rewards, 0 for neutral outcomes, -1 for punishments) to compute prediction errors r – Q, which we then 272 

used to update the action value Q for the chosen action a towards cue s:  273 

�����, ��� = ��	
���, ��� + � ∗ �� − ��	
���, ����      (1) 274 

Here, the difference in Q-values between choice options (QGo – QNoGo) serves as the input to 275 

the drift rate. This difference is initially zero, but grows with learning (positive difference if “Go” leads 276 

to more rewards, and negative difference if “NoGo” leads to more rewards). This Q-value difference is 277 

then multiplied with a constant drift rate parameter. At the beginning of the learning process, the 278 

resulting low drift rates lead to more stochastic choices and slow RTs, but, as the Q-value difference 279 

grows, higher drift rates result in more deterministic choices and faster RTs. The learning process 280 

requires an additional free parameter, i.e., the learning rate parameter ε, which determines the impact 281 

of the prediction error on belief updating. The drift rate parameter acts akin to the inverse temperature 282 

parameter used in the softmax choice rule, with higher drift rates leading to more deterministic choices. 283 

One peculiarity of the Motivational Go-NoGo Task is the NoGo response option, which by 284 

definition does not yield RTs. Variants of the DDM allow for such responses by integrating over the 285 

latent RT distribution of the implicit NoGo decision boundary (Gomez, Ratcliff, & Perea, 2007; 286 

Ratcliff, Huang-Pollock, & McKoon, 2018), for which an approximation exists (Blurton, Kesselmeier, 287 

& Gondan, 2012). This implementation has previously been used to model another variant of 288 

motivational Go/ NoGo task (Millner, Gershman, Nock, & den Ouden, 2017) and is implemented in the 289 

HDDM toolbox (Wiecki, Sofer, & Frank, 2013). 290 

Note that RL-DDMs were not mentioned in the pre-registration, which only mentioned 291 

reinforcement learning models to-be fitted to participants’ choices. In light of the results from the 292 

regression analyses, incorporating RTs into the model and testing alternative mechanisms by which 293 

stakes could influence the choice process seemed warranted. 294 

Model space. We fit a series of increasingly complex models. We first tested whether an RL-295 

DDM fit the data better than a standard DDM; then tested the computational implementation of the 296 

Pavlovian bias, and lastly tested the effect of stakes on model parameters. Model M1 (parameters α, τ, 297 
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β, δINT) just featured the DDM model with a constant drift rate parameter, but no learning, assuming 298 

that participants have a constant propensity to make a Go response for any trial, irrespective of the 299 

presented cue. M2 (parameters α, τ, β, δINT, δSLOPE, ε) added a reinforcement learning process, updating 300 

Q-values for Go and NoGo for each cue with the observed feedback, multiplying the Q-value difference 301 

(QGo – QNoGo) with the drift rate parameter δSLOPE and finally adding it to the drift-rate intercept δINT to 302 

obtain the net drift rate. Including a drift-rate intercept δINT, i.e., an overall tendency towards making a 303 

Go/NoGo response even when the Q-value difference was zero, which is similar to an overall Go bias 304 

parameter, yielded considerably better fit than models without such an intercept. If people learned the 305 

task, model M2 should fit their data better than M1. Next, M3 and M4 comprised different 306 

implementations of the Pavlovian bias, either assuming separate starting point biases (M3; parameters 307 

α, τ, βWIN, βAVOID, δINT, δSLOPE, ε) or alternatively separate drift rate intercepts (M4; parameters α, τ, β, 308 

δWIN, δAVOID, δSLOPE, ε) for Win and Avoid cues, two plausible implementations considered in previous 309 

literature (Millner et al., 2017). Next, models M5-M8 (parameters α, τ, β, δWIN, δAVOID, δSLOPE, ε, one 310 

additional parameter π for high stakes) extended M4 and tested possible effects of the stakes on a single 311 

parameter, implementing effect of the stakes on the threshold (M5), the non-decision time (M6), the 312 

bias (M7) and the drift rate intercept (M8). As a control, models M9-M11 (parameters α, τ, β, δWIN, 313 

δAVOID, δSLOPE, ε, two additional parameters π and θ for high stakes) tested effects of stakes on two 314 

parameters (only combinations that could potentially give rise to response slowing), namely on both the 315 

threshold and the non-decision time (M9), the threshold and the drift rate (M10; i.e. the two parameters 316 

typically modulated by speed-accuracy trade-offs), and the non-decision time and drift rate (M11). 317 

Finally, given the results from model comparison of these earlier models, M12 tested whether the effect 318 

of stakes of non-decision time was different for congruent and incongruent cues. 319 

Priors, transformations, parameterization, and starting values. We fitted models in a 320 

hierarchical Bayesian fashion, modeling group-level parameters (means and standard deviations) that 321 

served as priors for the subject-level parameters using the probabilistic programming language Stan 322 

(Carpenter et al., 2017) in R (rstan). Stan implements a Hamiltonian Monte-Carlo (HMC) Markov-323 

chain algorithm with a No-U-Turn sampler (NUTS). We used the following group-level hyperpriors: 324 
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Mδ ~ N(5, 2), Mα ~ N(0, 1), Mβ ~ N(0, 1), Mτ ~ N(0, 1), Mε ~ N(0, 1), Mπ ~ N(0, 1), Mϑ ~ N(0, 1), and 325 

for all SDs: SD ~ N(0, 1). The parameters δ, α, τ were constrained to be positive by using the y = log(1 326 

+ exp(x)) transformation, which is y = 0 for negative numbers, smoothly asymptotes 0 for small positive 327 

numbers, and is roughly y = x for large positive numbers. The parameters β and ε were constrained to 328 

be in the range [0, 1] by using a softmax transformation y = exp(x) / (1 + exp(x)). In line with previous 329 

DDM implementations in Stan (Fontanesi et al., 2019; Kraemer, Fontanesi, Spektor, & Gluth, 2021), 330 

we used a non-centered parameterization in which individual-subject parameters are modeled with a 331 

standard normal prior N(0, 1) that is first multiplied with the group-level standard deviation and then 332 

added to the group-level mean parameter. Furthermore, again in line with previous DDM 333 

implementations in Stan (Fontanesi et al., 2019; Kraemer et al., 2021), we set the following starting 334 

values: Mα = -0.18, Mτ = -10, Mβ ~ N(0.5, 0.1), MδINT ~ N(0, 1), MδSLOPE~ N(0, 1), Mπ ~ N(0, 0.1), Mθ ~ 335 

N(0, 0.1), all group-level SDs = 0.001, all subject level parameters as ~ N(0, 1). For models with an 336 

effect of stakes on the non-decision-time (M6, M9, M11), τ (low stakes) had to be initialized to be 337 

considerably smaller than π (high stakes), which was accomplished by Mτ ~ N(0, 1e-6) and SDτ = 1e-6. 338 

Model fitting and convergence checks. For each model, we used four chains with 10,000 339 

iterations each (5,000 as warm-up), yielding a total of 20,000 samples contributing to the posteriors. 340 

We checked that Rhats for all parameters were below 1.01, effective sample sizes for all parameters 341 

were at least 400, that chains were stationary and well-mixing (using trace plots), that the Bayesian 342 

fraction of missing information (BFMI) for each chain was above 0.2, and that (if possible) no divergent 343 

transitions occurred (Baribault & Collins, 2023). To minimize the occurrence of divergent transitions, 344 

we increased the target average proposal acceptance probability (adapt_delta) to 0.99. We visually 345 

inspected that posterior densities were unimodal and no strong trade-offs between parameters across 346 

samples occurred.  347 

Model comparison. For model comparison, we used the LOO-IC (efficient approximate leave-348 

one-out cross-validation information criterion) based on Pareto-smoothed importance sampling (PSIS) 349 

(Vehtari, Gelman, & Gabry, 2017). For completeness, we also report the WAIC (widely applicable 350 

information criterion) in Supplementary Material S07, but give priority to the LOO-IC, which is more 351 
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robust to weak priors or influential observations (Vehtari et al., 2017). Both WAIC and LOO-IC behave 352 

like the negative log-likelihood, with lower numbers indicating better model fit. 353 

Posterior predictive checks. For the winning model M12, we randomly drew 1,000 samples 354 

from the posteriors of each participants’ subject-level parameters, simulated a data set for each 355 

participant for each of these 1,000 parameter settings, and computed the mean simulated p(Go), 356 

p(Correct), and RT for each participant for each trial across parameter settings. We then plotted the 357 

mean simulated p(Go), p(Correct), and RT as a function of relevant task conditions to verify that the 358 

model could reproduce key qualitative patterns from the empirical data (Palminteri, Wyart, & Koechlin, 359 

2017).  360 

Parameter recovery. For the winning model M12, we fitted a multivariate normal distribution 361 

to the mean subject-level parameters across participants and sampled 1,000 new parameter settings from 362 

this distribution. We simulated a data set for each parameter setting and fitted model M12 to the 363 

simulated data. We then correlated the “ground-truth” generative parameters used to simulate each data 364 

set to the fitted parameters obtained when fitting M12 to it. To evaluate whether correlations were 365 

significantly higher than expectable by chance, we computed a permutation null distribution of the on-366 

diagonal correlations. For this purpose, over 1,000 iterations, we randomly permuted the assignment of 367 

fitted parameter values to data sets, correlated generative and fitted parameter values, and saved the on-368 

diagonal correlations. We tested empirical correlations against the 95th percentile of this permutation 369 

null distribution. 370 

Model recovery. For each of the 12 models, we fitted a multivariate normal distribution to the 371 

mean subject-level parameters across participants and sampled 1,000 new parameter settings from it 372 

(with the constraints that learning rates were required to be > 0.05 and parameter differences sampled 373 

from the upper 50% of the parameter distribution to keep models distinguishable). We simulated a new 374 

data set for each parameter setting, resulting in total in 12,000 data sets. We fitted each of the 12 models 375 

to each data set, resulting in 144,000 model fits. For each data set, we identified the model with the 376 

lowest LOO-IC. We counted how often each fitted model Y emerged as the winning model for the data 377 

sets of each generative model X, computing the forward confusion matrix containing conditional 378 
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probabilities p(best fitting model = Y | generative model = X) for each combination of generative model 379 

X and fitted model Y (Wilson & Collins, 2019). We also computed the inverse confusion matrix 380 

containing p(generative model = X | best-fitting model = Y; see Supplementary Material S07). To 381 

evaluate whether these probabilities were significantly higher than expectable by chance, we computed 382 

a permutation null distribution of the on-diagonal probabilities. For this purpose, over 1,000 iterations, 383 

we randomly permuted the LOO-IC values of all fitted models for a given data set, counted how often 384 

each fitted model emerged as the winning model for the data sets of each generative model, and 385 

extracted the on-diagonal probabilities. We tested empirical probabilities against the 95th percentile of 386 

this null distribution. 387 

Transparency and openness  388 

We report how we determined our sample size, all data exclusions, all manipulations, and all measures 389 

in the study. All data, analysis code, and research materials will be shared upon publication. The study 390 

design, hypotheses, and analysis plan were pre-registered on OSF under https://osf.io/ue397. Data were 391 

analyzed using R, version 4.1.3 (R Core Team, 2022). Models were fitted with the package lme4, 392 

version 1.1.31 (Bates et al., 2015). Plots were generated with ggplot, version 3.4.2 (Wickham, 2016). 393 

Results 394 

Manipulation checks: Learning and Pavlovian biases 395 

As a manipulation check and in order to compare the results from this study to previous studies 396 

(Algermissen et al., 2022; Swart et al., 2018, 2017), we fitted a mixed-effects logistic regression with 397 

responses (Go/ NoGo) as dependent variable as well as required action (Go/ NoGo) and valence (Win/ 398 

Avoid) and independent variables (see Supplementary Material S01 for an overview of all regression 399 

results; see Supplementary Material S04 for means and standard deviations per condition). Participants 400 

made significantly more Go responses to Go cues than NoGo cues (required action), b = 1.441, 95%-401 

CI [1.252, 1.630], χ2(1) = 87.873, p < .001, indicating that they learned the task. They also showed 402 

significantly more Go responses to Win than Avoid cues (cue valence), b = 0.750, 95%-CI [0.609, 403 

0.889], χ2(1) = 59.587, p < .001, reflecting a Pavlovian bias (Fig. 2A–C). There was no evidence for the 404 
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Pavlovian bias being stronger for either Go or NoGo cues (required action x valence), b = 0.019, 95%-405 

CI [-0.100, 0.137], χ2(1) = 0.093, p = .760. 406 

Next, we performed a similar mixed-effects linear regression with reaction times (RTs) as 407 

dependent variable. Note that RTs were naturally only available for (correct and incorrect) Go 408 

responses. Participants showed significantly faster (correct) responses to Go cues than (incorrect) 409 

responses to NoGo cues (required action), b = -0.109, 95%-CI [-0.145, -0.073], χ2(1) = 27.494, p < .001, 410 

and significantly faster responses to Win than Avoid cues (cue valence), b = -0.191, 95%-CI [-0.227, -411 

0.155], χ2(1) = 59.204, p < .001, again reflecting the Pavlovian bias (Fig. 3A–C). The cue valence effect 412 

(Pavlovian bias) on RTs was slightly stronger for (correct) response to Go cues than (incorrect) 413 

responses to NoGo cues (required action x cue valence) , b = -0.032, 95%-CI [-0.061, -0.003], χ2(1) = 414 

4.384, p = .036. The strength of the Pavlovian bias (both in responses and RTs) was neither correlated 415 

with working memory span, nor impulsivity, nor neuroticism (Supplementary Material S05). In sum, 416 

participants learned the task and exhibited a Pavlovian bias in both responses and RTs. 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 
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Figure 2. Effect on propensity of Go responses. A. Learning curves per cue condition. B. Proportion of Go responses per cue condition 
(individual dots are individual participant means). Participants show more Go responses to Go than NoGo cues (indicative of learning the 
task) and more Go responses to Win cues than Avoid cues (indicative of Pavlovian biases). C. Group-level (colored dot, 95%-CI) and 
individual-participant (grey dots) regression coefficients from a mixed-effects logistic regression of responses on required action, cue 
valence, and their interaction. D. Accuracy per cue condition and stakes condition. There is no effect of stakes on responses for any cue 
condition. E. Accuracy per valence-action congruency and stakes condition. Accuracy is higher for congruent than incongruent conditions, 
but this congruency effect is not modulated by stakes. F. Group-level and individual-participant regression coefficients from a mixed-
effects logistic regression of responses on congruency, stakes, and their interaction. 

 428 

Confirmatory analyses: Modulation by stakes 429 

 As the first set of confirmatory, pre-registered analyses, we fitted a mixed-effects logistic 430 

regression with accuracy (correct/ incorrect) as dependent variable and congruency (congruent/ 431 

incongruent) and stakes (high/ low) as independent variables. There was a significant main effect of 432 

congruency, b = 0.600, 95%-CI [0.499, 0.702], χ2(1) = 67.867, p < .001, with higher accuracy to 433 

congruent than incongruent cues, again reflecting the Pavlovian bias. However, neither the main effect 434 

of stakes, b = -0.026, 95%-CI [-0.065, 0.013], χ2(1) = 1.430, p = .232, nor the interaction between 435 

congruency and stakes, b = -0.007, 95%-CI [0.046, 0.032], χ2(1) = 0.094, p = .759, was significant (Fig. 436 

2E, F). 437 

Exploratory post-hoc tests for each cue condition separately did not show any effect of stakes 438 

on responses for any cue condition (Go-to-Win: z = -0.590, p = .555; Go-to-Avoid: z = -0.184, p = .854; 439 

NoGo-to-Win: z = -0.145, p = .885; NoGo-to-Avoid: z = -0.963, p = .3357; Fig. 2D). In further 440 

exploratory analyses, we tested whether an effect of stakes on responses emerged (or disappeared) over 441 
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time, either within the learning trajectory of a cue (cue repetition; 1 – 20) or across the entire task (trial 442 

number: 1–320). Neither the interaction between cue repetition and stakes, b = -0.002, 95%-CI [-0.039, 443 

0.035], χ2(1) = 0.020, p = .898, nor the interaction between trial number and stakes, b = -0.012, 95%-444 

CI [-0.048, 0.023], χ2(1) = 0.401, p = .527, was significant, providing no evidence for stakes influencing 445 

responses selectively at certain time points during learning or during the task. In sum, there was no 446 

evidence for stakes modulating the Pavlovian bias in participants’ responses. 447 

As the second set of confirmatory, pre-registered analyses, we fitted a mixed-effects linear 448 

regression with RTs as dependent variable and congruency (congruent/ incongruent) and stakes (high/ 449 

low) as independent variables. Participants responded significantly faster to congruent than incongruent 450 

cues (congruency), b = -0.131, 95%-CI [-0.160, -0.102], χ2(1) = 49.546, p < .001, reflecting the 451 

Pavlovian bias. Furthermore, they responded significantly more slowly under high compared to low 452 

stakes (stakes), b = 0.072, 95%-CI [0.051, 0.092], χ2(1) = 33.702, p < .001 (Fig 3E, F). Finally, the 453 

interaction between congruency and stakes was significant, b = -0.019, 95%-CI [-0.037, -0.001], χ2(1) 454 

= 3.856, p = .049, with a stronger congruency effect under high compared to low stakes. This effect was 455 

also significant (p = .046) when including RTs < 300 ms (see Supplementary Material S02), but only 456 

marginally significant (p = .060) when adding the data of remaining participant with not-above-chance 457 

performance (see Supplementary Material S03). The effect of stakes on RTs was correlated neither with 458 

working memory span, impulsivity, or neuroticism (Supplementary Material S05). 459 

Exploratory post-hoc tests for each cue condition separately yielded a significant effect of 460 

stakes on RTs for three out of four cue conditions, including in particular the two incongruent conditions 461 

Go-to-Avoid and NoGo-to-Win (Go-to-Win: z = 2.973, p = .003; Go-to-Avoid: z = 4.528, p < .001; 462 

NoGo-to-Win: z = 4.975, p < .001; NoGo-to-Avoid: z = 1.414, p = .158; Fig. 3D). In further exploratory 463 

analyses, we tested whether the effect of stakes on responses got stronger or weaker with time, either 464 

within the learning trajectory of a cue (cue repetition) or across the entire task (trial number). Neither 465 

the interaction between stakes and cue repetition, b = -0.012, 95%-CI [-0.030, 0.006], χ2(1) = 1.599, p 466 

= .206, nor the interaction between stakes and trial number, b = 0.025, 95%-CI [-0.021, 0.018], χ2(1) = 467 

0.480, p = .489, was significant, providing no evidence for a change in the effect of stakes on RTs over 468 
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time. See Supplementary Material S06 for tests for non-linear changes with time, again finding no 469 

evidence for changes in the effect of stakes over time. In sum, these results suggest that high stakes 470 

affected participant responses in that they overall slowed down responses. This slowing was slightly 471 

stronger for incongruent than congruent cues and appeared to be constant over time. However, stakes 472 

did not affect response accuracy nor the degree of Pavlovian bias as indexed by the decisions to make 473 

a Go or NoGo response. 474 

Figure 3. Effect on propensity of reaction times (RTs). A. Distribution of RTs for high and low stakes. RTs are slower under high stakes. 
B. RTs per cue condition. Participants show faster RTs for (correct) Go responses to Go cues than (incorrect) Go responses to NoGo cues 
and faster RTs for Go to Win cues than Avoid cues (indicative of Pavlovian biases). C. Group-level (colored dot, 95%-CI) and individual-
participant (grey dots) regression coefficients from a mixed-effects linear regression of RTs on required action, cue valence, and their 
interaction. D. RTs per cue condition and stakes condition. RTs are significantly slower under high stakes in the Go-to-Win (G2W), Go-
to-Avoid (G2A), and NoGo-to-Win (NG2W) conditions. E. RTs per valence-action congruency and stakes condition. RTs after 
significantly slower under high compared to low stakes. This effect is significantly stronger for incongruent than congruent cue conditions. 
F. Group-level and individual-participant regression coefficients from a mixed-effects linear regression of RTs on congruency, stakes, and 
their interaction. 

 475 

Computational Modeling of Responses and RTs (RL-DDMs) 476 

 To better understand the mechanisms by which cue valence and stakes influenced responses 477 

and RTs, we fit a series of increasingly complex reinforcement-learning drift-diffusion models (RL-478 

DDMs). A past study using a similar paradigm found evidence for cue valence modulating the starting 479 

point bias in an evidence-accumulation framework rather than the drift rate (Millner et al., 2017), 480 

although evidence in that study remained mixed. Furthermore, past studies suggested that response-481 
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slowing might reflect a speed-accuracy trade-off, with stakes leading to response caution and higher 482 

decision thresholds, leading to higher accuracy at the cost of slower responses (Bogacz, Brown, 483 

Moehlis, Holmes, & Cohen, 2006; Shevlin, Smith, Hausfeld, & Krajbich, 2022; Wiecki & Frank, 2013). 484 

We implemented different mechanisms of how cue valence and stakes might influence the various 485 

parameters (decision threshold, non-decision time, starting point bias, drift rate intercept) in an evidence 486 

accumulation framework and compared the fit of different, increasingly complex models. 487 

Behavior was better described by an RL-DDM (M2) in which participants learned cue-specific 488 

Q-values rather than an standard DDM (M1) with a fixed propensity to emit Go/ NoGo responses (Fig. 489 

4A), reflecting that participants learned the task and that learned affected responses and RTs. Model fit 490 

was further improved when incorporating a Pavlovian bias (M3–M4), specifically when fitting separate 491 

drift rate intercepts for Win and Avoid cues (M4; with high drift rate intercepts for Win than Avoid 492 

cues, see Fig. 4B). Next, we assessed different mechanisms through which stake magnitude could affect 493 

responding, which further improved model fit (M5–M8). Here, the best model was one in which stakes 494 

modulate the non-decision time (M6). Note that, although M6 showed a superior fit to M4, group-level 495 

non-decision times for high and low stakes were not significantly different from each other (Mdiff = 496 

0.012, 95%-CI [-0.017, 0.041]), suggestive of the presence of individual differences with an overall 497 

mean close to zero. Allowing stakes to modulate two instead of one parameter did not yield any 498 

substantial improvement in fit (M9–M11). Specifically, a model implementing a “classical” speed-499 

accuracy tradeoff by allowing stakes to influence both the threshold and the drift rate (M10) performed 500 

worse than a model allowing stakes to influence the non-decision time (M6). Lastly, model fit was 501 

further improved by when splitting the effect of stakes into separate parameters for congruent and 502 

incongruent cues (M12), which was overall the best fitting model in the model comparison. Note that 503 

M12 has the same number of parameters as models M9-M11, suggesting that the increase in fit is not 504 

due to a mere increase in the number of parameters, but due to the specific mechanism implemented. 505 

Also note that, although M12 with separate non-decision times under high stakes for congruent and 506 

incongruent cues outperformed M6 with a single non-decision time under high stakes, there was no 507 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 27, 2023. ; https://doi.org/10.1101/2023.12.26.573351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573351
http://creativecommons.org/licenses/by/4.0/


STAKE MAGNITUDE IN PAVLOVIAN BIASES  22 
 

group-level difference between the parameters for congruent vs. incongruent cues (Mdiff = -0.003, 95%-508 

CI [-0.033, 0.027], Fig. 4B), suggestive of individual differences with a group-level mean close to 0. 509 

We performed several model validation checks to verify that the winning model M12 was able 510 

to capture key qualitative features of the empirical data (posterior predictive checks), could identify 511 

data-generating parameters reliably (parameter recovery), and could be distinguished from other models 512 

(model recovery). Data simulated from M12 reproduced a Pavlovian bias in responses and RTs, 513 

reproduced an overall slowing under high stakes, but somewhat underestimated the difference in RT 514 

slowing between congruent and incongruent cues (Fig. 4C; see also Supplementary Material S07 for 515 

further plots). Furthermore, generative and fitted parameters were overall highly correlated, indicative 516 

of a successful parameter recovery (Mr = 0.83, SDr = 0.14, range 0.62–0.98; 95th percentile of 517 

permutation null distribution: r = 0.08; Fig. 4D; see Supplementary Material S07 for scatter plots of on-518 

diagonal correlations). Besides correlations between generative parameters with their corresponding 519 

fitted parameters, there were two notable cases of off-diagonal correlations: first, the different non-520 

decision times (under low stakes, under high stakes for congruent cues, and under high stakes for 521 

incongruent cues) were correlated (r = 0.71 and r = 0.77; Fig. 4D), reflecting an overall tendency 522 

towards faster/ slower responses that is naturally shared across all three parameters. Second, learning 523 

rates and drift rate slopes were negatively correlated across parameter settings (r = -0.56; Fig. 4D), 524 

which mimics the frequently observed trade-off between learning rate and inverse temperature 525 

parameters in more classic reinforcement learning models of choices (Ballard & McClure, 2019). In 526 

RL-DDMs, the drift rate slope is multiplied with the Q-value difference, so that steeper slopes lead to 527 

more deterministic choices and shallower slopes lead to more stochastic choices, similar to an inverse 528 

temperature parameter. Finally, model recovery was successful, particularly for the winning model 529 

M12, which was the best fitting model for 98% of data sets for which it was the generative model 530 

(forward confusion matrix; Fig. 4E). Recovery for the other models was not quite as high, though still 531 

significantly above chance for all models (Mp = 0.31, SDp = 0.32, range 0.13–0.98; 95th percentile of 532 

permutation null distribution: p = 0.10). See Supplementary Material S07 for matrices involving only 533 

the five nested sub-versions of M12 (i.e., M1, M2, M4, M6, M12). In this restricted subset, recovery 534 
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was much higher (Mp = 0.74, SDp = 0.24, range 0.44–0.99; 95th percentile of permutation null 535 

distribution: p = 0.22). Also, see Supplementary Material S07 also for the inverse confusion matrix. 536 

In sum, model comparison results were in line with the regression results, yielding a selective 537 

effect of stakes in prolonging the non-decision time, and separately so for incongruent and congruent 538 

cues. Stakes did not affect the threshold and/or the drift rate as typically observed in a speed-accuracy 539 

trade-off. Hence, we conclude that stakes do not shift the speed-accuracy trade-off, but rather lead to a 540 

response slowing independent of response selection. 541 

Figure 4. Reinforcement-learning drift-diffusion models. A. Model comparison. LOO-IC favors model M12, implementing separate drift 
rate intercepts for Win and Avoid cues and separate non-decision times for low stakes, congruent cues under high stakes, and incongruent 
cues under high stakes. B. Densities of best fitting parameters for model M12 per participant. Drift rate intercepts for Win cues are 
consistently higher than drift rate intercepts for Avoid cues. Note that, although the winning model implements separate non-decision times 
for high/ low stakes and congruent/ incongruent cues, the parameter values for these different conditions are not significantly different 
from each other. C. Posterior predictive checks for the winning model M12. Left panel: Simulated proportion of Go responses per required 
action and cue valence averaged over simulations and participants. The winning model M12 reproduces Pavlovian biases in responses and 
RTs (see Supplementary Material S07). Right panel: Simulated RTs per cue congruency per stakes level averaged over simulations and 
participants. The winning model M12 reproduces the overall slowing under high stakes as well as differences in slowing between congruent 
and incongruent cues, but underestimates this difference compared to the empirical data. For further plots, see Supplementary Material 
S07. D. Parameter recovery for the winning model M12. Correlations between generative parameters used for simulating 1,000 data sets 
based on M12 and parameters obtained when fitting M12 to simulated data. All correlations between generative and fitted parameters (on-
diagonal correlations) are significantly above chance. E. Model recovery for model M1-M12. The forward confusion matrix displays the 
conditional probabilities that model Y is the best fitting model (columns) if model X (rows) is the underlying generative model used to 
simulate a given data set. On-diagonal probabilities indicate the probability of reidentifying the generative model. All on-diagonal 
probabilities are significantly above chance. Especially recovery for M12 is exceptionally high. For the inverse confusion matrix and matrix 
on subsets of models, see Supplementary Material S07. 

Discussion 542 

 In this pre-registered experiment, we found evidence that increasing stake magnitude slowed 543 

down responses in a Motivational Go/NoGo Learning Task, especially for incongruent cue conditions, 544 
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without affecting whether participants responded or not. In line with previous literature, participants 545 

exhibited a Pavlovian bias in both responses and RTs (Algermissen et al., 2022; Swart et al., 2017), 546 

with more and faster Go responses to Win than Avoid cues. On trials with high stakes (i.e., larger 547 

rewards or punishments at stake), they slowed down, particularly for the two incongruent conditions 548 

Go-to-Avoid and NoGo-to-Win. This response slowing was best described by high stakes prolonging 549 

the non-decision time in a drift-diffusion model framework, particularly so for incongruent trials. This 550 

finding is inconsistent with both hypotheses put forward in the introduction, i.e., high stakes 551 

strengthening Pavlovian biases or high stakes motivating cognitive control to suppress them on 552 

incongruent trials. In sum, higher stakes slow down response selection, but neither strengthen nor 553 

weaken Pavlovian biases in responses. We propose two possible explanations for this (somewhat 554 

surprising) result: response slowing under high stakes might reflect (flexibly recruited) cognitive 555 

control, which is however ineffectively used, or it might reflect (automatic/ reflexive) positive condition 556 

suppression, i.e., the suppression of locomotion by large immanent rewards as previously observed in 557 

animal studies. 558 

No evidence for bias strengthening or bias suppression 559 

On trials with high stakes, participants took longer to make a Go response, but did not exhibit 560 

any altered tendency for Go/ NoGo responses, i.e. no reduction or enhancement of Pavlovian biases. 561 

Apart from the null effect on responses, RTs slowed down under high stakes, an effect that was highly 562 

consistent across participants (Fig. 3E, F). These two findings are incompatible with the first hypothesis 563 

posited, i.e., high stakes strengthening Pavlovian biases. Slowing (instead of speeding) of responses 564 

under high rewards might appear quite surprising given a large body of literature showing higher 565 

incentives to speed up responses (Fontanesi et al., 2019; Knutson et al., 2001; Luo et al., 2009; Pirrone, 566 

Azab, Hayden, Stafford, & Marshall, 2018; Smith & Krajbich, 2018) and some evidence for larger PIT 567 

effects for high compared to low value cues (Algermissen & den Ouden, 2023; Schad et al., 2020). 568 

Notably, response slowing occurred for both appetite and aversive cues, suggesting that the effect is 569 

independent of cue valence and orthogonal to the Pavlovian biases. Note that 50% of trials were high 570 

stake trials, arguing against the possibility of surprise (i.e., oddball effects) driving the response 571 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 27, 2023. ; https://doi.org/10.1101/2023.12.26.573351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573351
http://creativecommons.org/licenses/by/4.0/


STAKE MAGNITUDE IN PAVLOVIAN BIASES  25 
 

slowing. High and low stake trials were visually very distinct, arguing against differences in processing 572 

demands between both trial types. In sum, the size of Pavlovian biases in the Motivational Go/NoGo 573 

Task appears to be unaffected by stake magnitude, which instead induced a response slowing orthogonal 574 

to the biases. 575 

Response slowing under high stakes might be partly compatible with the second hypothesis 576 

(EVC), i.e., high stakes increasing cognitive control in order to suppress biases, given that heightened 577 

cognitive control recruitment is often inferred from/ accompanied by prolonged reaction times (Frank, 578 

2006; Shenhav et al., 2013; Wessel & Aron, 2017). Specifically, in line with our preregistered 579 

hypothesis that high stakes increase cognitive control recruitment, response slowing was stronger on 580 

motivationally incongruent trials on which Pavlovian biases had to be suppressed in order to execute 581 

the correct response. This effect suggests that participants did distinguish the different cue conditions 582 

with respect to whether they could benefit from increased cognitive control recruitment and prolonged 583 

deliberation times (i.e., situations in which control could in theory change the emitted response) or not. 584 

However, the increased deliberation time putatively afforded by cognitive control recruitment was 585 

inconsequential for response selection, and the size of Pavlovian biases (in terms of the proportion of 586 

Go responses for Win vs. Avoid cues) was unaltered under high stakes. One might thus conclude that 587 

participants recruited additional cognitive control, but did not effectively use it to suppress their 588 

Pavlovian biases when they were unhelpful. 589 

An alternative explanation for response slowing under high stakes might be the phenomenon 590 

of “choking under pressure”, i.e., the fear of failure in high-stakes situations inducing rumination and 591 

thus decreasing performance (Beilock & Carr, 2001, 2005), an option we had considered in our pre-592 

registration. Choking under pressure predicts a pattern opposite to the second hypothesis (EVC), with 593 

high stakes undermining cognitive control recruitment and leading to lower performance in incongruent 594 

conditions. While the observed slowing of RTs could be interpreted as a kind of “choking under 595 

pressure”, we did not observe corresponding performance decrements. Hence, this finding does not fall 596 

under the phenomenon of “choking under pressure” as investigated in previous literature. In sum, these 597 
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results are most compatible with the idea of high stakes leading to increased cognitive control 598 

recruitment, though without any consequences for response selection and accuracy. 599 

No evidence for a speed-accuracy tradeoff 600 

Past computational models have proposed mechanisms of how decision accuracy—which is 601 

particularly warranted in high stakes situations—can be prioritized over speed by increasing decision 602 

thresholds in an evidence accumulation framework (Bogacz et al., 2006). Such increased decision 603 

bounds have been typically investigated in situations in which choice options are close in value and 604 

thus eliciting cognitive conflict. Neuro-computational models suggest that such conflict is detected by 605 

the anterior cingulate cortex and presupplementary motor area, which—via the hyperdirect pathway 606 

involving the subthalamic nucleus—project to the globus pallidus and increase decision thresholds in 607 

the basal ganglia action selection circuits, leading to a higher requirement for positive evidence to elicit 608 

a response (Cavanagh et al., 2011; Forstmann et al., 2008; Frank, 2006; Frank et al., 2015; Wiecki & 609 

Frank, 2013). This decision threshold adjustment will lead to a higher proportion of correct, but overall 610 

slower responses. It is plausible that the same mechanism could lead to response caution in the context 611 

of high-value cues. In fact, a series of recent studies found that cues indicating an upcoming choice 612 

between high-value options (but not the presence of high-value options per se) slowed down of RTs, 613 

which was best captured by a heightened decision threshold (Shevlin et al., 2022). However, in contrast, 614 

the data of the present study were best explained by a model embodying prolonged non-decision times 615 

rather than heightened response thresholds. It is thus unclear whether the same computational and neural 616 

mechanisms proposed for implementing speed-accuracy tradeoffs are also responsible for the response 617 

slowing observed in this data. Future studies using neuroimaging of cortical and subcortical activity 618 

(Algermissen et al., 2022) and instructions to prioritize speed or accuracy during the task (Forstmann 619 

et al., 2008) while simultaneously manipulating stakes could shed light on shared vs. separate neural 620 

mechanisms. 621 

Response slowing as positive conditioned suppression 622 

Another possible interpretation of our findings is that the response slowing under large stake 623 

magnitudes is an instance of positive conditioned suppression as previously reported in rodents (Azrin 624 
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& Hake, 1969; Marshall, Halbout, Munson, Hutson, & Ostlund, 2023; Van Dyne, 1971). In positive 625 

conditioned suppression, cues signaling the immanent receipt of a reward suppress responding. 626 

Specifically, a cue announcing an immanent reward suppresses exploratory behavior that would move 627 

the animal away from a food site, and instead invigorates and prolongs engagement with the site of 628 

reward delivery until the reward is obtained (Marshall, Munson, Maidment, & Ostlund, 2020). 629 

However, this suppression can extend backwards in time such that it even affects the instrumental 630 

response required to obtain the reward (i.e., a lever press). A recent study found small rewards to 631 

invigorate responding in line with classical PIT findings (Marshall et al., 2023). However, large rewards 632 

suppressed instrumental lever pressing and diminished PIT effects, suggestive of positive conditioned 633 

suppression interfering with PIT in a way similar of our findings.  634 

One speculation on the adaptive nature of this phenomenon is that it may prevent agents to 635 

become distracted by other reward opportunities and forget to collect the reward they previously worked 636 

for (Timberlake, Wahl, & King, 1982). Notably, the prolongation of RTs in the present data was 637 

particularly strong for motivationally incongruent cues, which perhaps argues against a purely 638 

automatic, “reflexive” nature of the observed effect of stake magnitude on RTs (such as positive 639 

conditioned suppression), and instead in favor of an adaptive effect that is (at least partially) sensitive 640 

to task requirements. It is thus possible that both (automatic) positive conditioned suppression and 641 

(voluntary) heightened cognitive control recruitment triggered by motivational conflict are present, or 642 

that positive conditioned suppression is (partially) a consequence of cognitive control recruitment. 643 

Future studies could test whether the slowing induced by high stakes is sensitive to the temporal delay 644 

between response execution and outcome delivery, which would argue for interference between reward 645 

collection and response selection as the cause of slowing (Delamater & Holland, 2008; Marshall et al., 646 

2023; Marshall & Ostlund, 2018; Meltzer & Hamm, 1978; Miczek & Grossman, 1971). 647 

Furthermore, conditioned suppression has yet not been studied in the context of avoiding 648 

aversive outcomes. Slowing induced by conditioned suppression will look highly similar to slowing 649 

induced by the Pavlovian bias itself. In our data, the finding that effects of action-valence congruency 650 

(i.e. Pavlovian bias) and stake magnitude on RTs were additive suggests independent mechanisms. 651 
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Future research might try to disentangle these two effects further by using an “escape” context in which 652 

participants must select actions to terminate an ongoing punishment (e.g. loud noise), which typically 653 

inverts the Pavlovian bias and leads to an increased tendency towards action (Millner et al., 2017). 654 

Varying the punishment magnitude in such a context could potentially elucidate joint or independent 655 

contributions of Pavlovian biases and conditioned suppression on RTs. 656 

Normative aspects 657 

The presented results suggest that high stakes do not strengthen or weaken Pavlovian biases per 658 

se; rather, they globally slow or pause behavior. This slowing down can be adaptive in high threat 659 

situations in which response postponement mimics nonresponding, similar to freezing itself (Bach, 660 

2015), although in our data, the slowing did not affect participants’ eventual propensity to execute a Go 661 

response. This slowing might also be adaptive from the perspective of positive conditioned suppression 662 

in focusing an agent on reward collection and consumption rather than exploring other options in the 663 

meantime (Marshall et al., 2023). The ability to inhibit behavior and wait for rewards has been proposed 664 

to be serotonergic in nature, as serotonin is likely implicated in mediating aversive inhibition (Crockett, 665 

Clark, Apergis-Schoute, Morein-Zamir, & Robbins, 2012; Crockett, Clark, & Robbins, 2009; Geurts et 666 

al., 2013b). Indeed, serotonin depletion has been shown to abolish the slowing observed under high 667 

reward stakes (Bari & Robbins, 2013; den Ouden et al., 2015; Soubrié, 1986), while the activation of 668 

serotonergic neurons facilitates waiting for rewards (K. Miyazaki, Miyazaki, & Doya, 2011; K. 669 

Miyazaki et al., 2020; K. W. Miyazaki et al., 2014) and persistence in foraging (Lottem et al., 2018). 670 

Future research should explicitly test the putatively serotonergic nature of high stakes-induced response 671 

slowing in the Motivational Go/NoGo Task in particular and of positive conditioned suppression, more 672 

generally. 673 

Limitations and relations to other stakes manipulations 674 

A limitation of the current study is that high stakes were explicitly signaled via a red circle 675 

around the task cue. In this way, the task mimicked situations in which high stakes can be inferred 676 

directly from simple visual features, e.g. when telling apart a lion from a spider. However, it does not 677 

mimic situations in which high value must be inferred indirectly from past experiences or by combining 678 
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set of features, e.g., in detecting a good bargain house or car. In the context of the Motivational 679 

Go/NoGo Task, stakes were irrelevant for selection the optimal action, and evidence from a similar task 680 

(Algermissen & den Ouden, 2023) suggests that participants ignore differences in outcome value when 681 

learning about the optimal action. Hence, stakes might only play a role when explicitly signaled or 682 

easily perceivable from the environment, but not when they have to be inferred from past experiences. 683 

This is an important consideration for task designs that might explain the mixed literature on stakes 684 

effects in PIT tasks. Finally, the presented finding mimics cases where “high stakes” describes the entire 685 

situation rather than a single option (Shevlin et al., 2022), but is unlike cases where only a single option 686 

is more valuable and dominates all other options. 687 

Another limitation might be that stakes were not varied in a continuous fashion, but 688 

categorically as two discrete levels. Again, it might be plausible that agents represent situations (e.g. 689 

trials) as overall “high stakes” or not, irrespective of the particular value of single options (Shevlin et 690 

al., 2022). Varying the stakes magnitude in a continuous fashion would increase processing demands 691 

and thus already slow down responses due to perceptual (irrespective of additional decision) difficulty. 692 

Furthermore, participants might subjectively recode stakes levels relative to the mean stake level, 693 

representing low rewards as disappointing and thus akin to punishments, while perceiving low 694 

punishments as a relief and thus akin to rewards (Klein, Ullsperger, & Jocham, 2017; Palminteri, 695 

Khamassi, Joffily, & Coricelli, 2015). These considerations support the ecological validity of 696 

dichotomizing stakes into high and low levels. However, it remains to be empirically tested whether 697 

continuous stakes levels lead to similar or different effects. 698 

Conclusion 699 

In sum, while possibilities to gain rewards/ avoid punishments induce Pavlovian biases, 700 

increasing the stakes of these prospects does not alter the strength of the bias. However, high stakes 701 

motivate humans to slow down their responses. One interpretation is that this slowing is adaptive in 702 

allowing time for conflict detection and cognitive control recruitment in case motivational biases have 703 

to be suppressed. However, the slowing is not associated with changes in response selection, i.e., also 704 

not with the degree to which participants suppress their Pavlovian biases when these are unhelpful, 705 
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suggesting that humans do not use this additional time effectively. An alternative interpretation is that 706 

prolonged reaction times reflect positive conditioned suppression, i.e. attraction by the reward value 707 

that interferes with action selection itself as previously observed in rodents. Taken together, this study 708 

suggests that high stakes might have a similar effect in both humans and rodents in the context of 709 

Pavlovian/ instrumental interactions on action selection. 710 
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Supplemental Material S01: Overview results mixed-effects 1 

regression models 2 

Here, we report an overview over all major statistical results reported in the main text and the 3 

supplementary material. For details on how mixed-effects regression were performed, see the Methods 4 

section of the main text. 5 

Model ID DV IV b SE χ2(1) p 

1 Response Required action  1.441 0.096 87.873 < .001 

Valence  0.749 0.072 59.587 < .001 

Required action x cue valence  0.019 0.060 0.093 .760 

2 RT Required action  -0.109 0.019 27.494 < .001 

Valence  -0.191 0.019 59.204 < .001 

Required action x cue valence  0.031 0.015 4.384 .036 

3 Accuracy Congruency  0.600 0.052 67.867 < .001 

Stakes  -0.026 0.020 1.430 .232 

Congruency x Stakes   -0.007 0.020 0.094 .759 

4 RT Congruency  -0.131 0.015 49.546 < .001 

Stakes  0.072 0.010 33.702 < .001 

Congruency x Stakes   -0.019 0.010 3.856 .049 

Table S01. Overview of the results from all mixed-effects regression models reported the main text of the manuscript. 

Featuring data from N = 54 participants, trial with RTs < 0.300 sec. are excluded from RT analyses. 
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Supplemental Material S02: Overview results mixed-effects 23 

regression models on reaction times on all trials 24 

 25 

Model ID DV IV b SE χ2(1) p 

1 RT Required action  -0.103 0.019 23.936 < .001 

Valence  -0.183 0.019 53.550 < .001 

Required action x cue valence  -0.039 0.015 6.138 .013 

2 RT Congruency  -0.133 0.014 51.704 < .001 

Stakes  0.070 0.011 31.210 < .001 

Congruency x Stakes   -0.019 0.010 3.982 .046 

Table S02. Overview of RT regression models from N = 54 participants when including all trials (also those with RTs < 0.3 

sec.). 
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Supplemental Material S03: Overview results mixed-effects 51 

regression models including additional participant 52 

 53 

Model ID DV IV b SE χ2(1) p 

1 Response Required action  1.417 0.098 86.250 < .001 

Valence  0.736 0.071 59.174 < .001 

Required action x cue valence  0.019 0.059 0.097 .756 

2 RT Required action  -0.105 0.018 26.984 < .001 

Valence  -0.189 0.018 60.877 < .001 

Required action x cue valence  -0.033 0.015 4.824 .028 

3 Accuracy Congruency  0.591 0.052 67.189 < .001 

Stakes  -0.025 0.019 1.365 0.243 

Congruency x Stakes   -0.009 0.020 0.169 0.681 

4 RT Congruency  -0.130 0.014 50.997 < .001 

Stakes  0.071 0.010 34.566 < .001 

Congruency x Stakes   -0.018 0.009 3.527 .060 

Table S03. Overview of all regression models when including data from all N = 55 participants (also the one participant 

excluded from analyses reported in the main text for not performing above chance level). 
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Supplemental Material S04: Overview response, accuracy, and RT 76 

means and standard deviations per condition 77 

Responses 

Req. Act. Go Go NoGo NoGo 

Valence Win Avoid Win Avoid 

Mean 0.888 0.771 0.475 0.194 

SD 0.140 0.111 0.261 0.107 
Table S04. Means and standard deviations of Go/NoGo responses across participants per required action x valence 

condition. 

 78 

Responses 

Req. Act. Go Go Go Go NoGo NoGo NoGo NoGo 

Valence Win Win Avoid Avoid Win Win Avoid Avoid 

Stakes High Low High Low High Low High Low 

Mean 0.883 0.893 0.767 0.774 0.477 0.474 0.200 0.187 

SD 0.151 0.138 0.125 0.114 0.253 0.276 0.116 0.109 
Table S05. Means and standard deviations of Go/NoGo responses across participants per required action x valence x 

stakes condition. 

 79 

Accuracy 

Req. Act. Go Go NoGo NoGo 

Valence Win Avoid Win Avoid 

Mean 0.888 0.771 0.525 0.806 

SD 0.140 0.111 0.261 0.107 
Table S06. Means and standard deviations of accuracy across participants per required action x valence condition. 

 80 

Accuracy 

Req. Act. Go Go Go Go NoGo NoGo NoGo NoGo 

Valence Win Win Avoid Avoid Win Win Avoid Avoid 

Stakes High Low High Low High Low High Low 

Mean 0.883 0.893 0.767 0.774 0.523 0.526 0.800 0.813 

SD 0.151 0.138 0.125 0.114 0.253 0.276 0.116 0.109 
Table S07. Means and standard deviations of accuracy across participants per required action x valence x stakes 

condition. 

 81 

RTs 

Req. Act. Go Go NoGo NoGo 

Valence Win Avoid Win Avoid 

Mean 0.578 0.660 0.641 0.687 

SD 0.059 0.062 0.085 0.098 
Table S08. Means and standard deviations of reaction times across participants per required action x valence condition. 

 82 

RTs 

Req. Act. Go Go Go Go NoGo NoGo NoGo NoGo 

Valence Win Win Avoid Avoid Win Win Avoid Avoid 

Stakes High Low High Low High Low High Low 

Mean 0.585 0.570 0.675 0.645 0.660 0.620 0.695 0.681 

SD 0.064 0.063 0.072 0.063 0.098 0.099 0.117 0.122 
Table S09. Means and standard deviations of reaction times across participants per required action x valence x stakes 

condition. 
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Supplemental Material S05: Correlations with questionnaires 83 

In line with the exploratory analysis plans in mentioned in our pre-registration, we extracted the 84 

per-participant coefficients (fixed plus random effects) for (a) the effect of cue valence on responses 85 

(Pavlovian bias), (b) the effect of stakes on accuracy, (c) the effect of valence on RTs (Pavlovian bias), 86 

and (d) the effect of stakes on RTs. We then computed correlations of these coefficients with forward 87 

memory span (Fitzpatrick et al., 2015), backwards memory span, the non-planning subscale of the 88 

Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995), and the neuroticism subscale of the 89 

neuroticism sub-scale of the Big Five Aspects Scales (DeYoung, Quilty, & Peterson, 2007). One might 90 

plausibly hypothesize that impulsivity is related to the Pavlovian bias since many impulsive behaviors 91 

can be conceptualized as automatic, cue-triggered behaviors. Hence, individuals high on impulsivity 92 

might show stronger Pavlovian biases in responses and reaction times. Furthermore, one might 93 

hypothesize that the phenomenon of choking under pressure arises from rumination and worrying, which 94 

is typically increased in individuals scoring high on neuroticism (DeCaro, Thomas, Albert, & Beilock, 95 

2011). Also, the effects of rumination on performance might be stronger in individuals with a low 96 

working memory score (Beilock & Carr, 2005; Bijleveld & Veling, 2014; DeCaro et al., 2011). Hence, 97 

individuals high on neuroticism and/or low on working memory span might show stronger effects of 98 

stakes on behavior. 99 

See Figures S01 and S02 for scatterplots of all bivariate associations. None of the correlations 100 

were significant, providing no evidence for the strength of the Pavlovian bias or the effect of stakes on 101 

responses and RTs being related to either working memory span, impulsivity, or neuroticism. 102 

 103 
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Figure S01. Association of memory performance, impulsivity, and neuroticism with the valence and stakes effects on responses. Correlations 

between the effect of valence on responses (A–D), reflecting Pavlovian biases, and the effect of stakes on accuracy (E–H) with (A/F) 

forward working memory span, (B/F) backwards working memory span, (C/G) impulsivity (Barratt Impulsiveness Scale, non-planning 

subscale) and (D/H) neuroticism. Black dots represent per-participant scores, the red line the best-fitting regression line, they grey shade 

the 95%-confidence interval. None of the displayed correlations is significant at α = .05. 
 104 
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Figure S03. Association of memory performance, impulsivity, and neuroticism with the valence and stakes effects on RTs. Correlations 

between the effect of valence on RTs (A–D), reflecting Pavlovian biases, and the effect of stakes on RTs (E–H) with (A/F) forward working 

memory span, (B/F) backwards working memory span, (C/G) impulsivity (Barratt Impulsiveness Scale, non-planning subscale) and (D/H) 

neuroticism. Black dots represent per-participant scores, the red line the best-fitting regression line, they grey shade the 95%-confidence 

interval. None of the displayed correlations is significant at α = .05. 
 112 
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Supplemental Material S06: Effect of stakes on RTs over time 126 

In the results in the main text, we report linear associations between time on task (cue repetition, 127 

trial number with blocks, trial number across blocks) and reaction time. All associations were non-significant. 128 

A more sensitive approach to detect possible non-linear changes over time are so called additive models, 129 

which model a time series as a mixture of smooth functions (i.e., thin plate regression splines) for each 130 

condition, and allow to test whether (a) a given time series is significant different from a flat line, and (b) 131 

whether the time series of different conditions are significantly different from each other (Baayen et al., 2017; 132 

Wood, 2017). A smooth function regularizes a raw times series and suppresses high-frequency (i.e., trial-by-133 

trial) noise. Furthermore, it allows for non-zero auto-correlation between residuals, which are assumed to be 134 

zero in linear models.  135 

In order to test whether the effect of task conditions of stakes on RTs changed over time, we fit three 136 

generalized additive mixed-effects models with the z-standardized trial-by-trial RT as dependent variable, 137 

modelled as an effect of cue repetition (1–20) with separate time series for (a) each cue condition (Go-to-138 

Win, Go-to-Avoid, NoGo-to-Win, NoGo-to-Avoid), (b) for each stakes condition (high, low), or (c) the 139 

interaction between congruency (congruent, incongruent) and stakes (high, low). We modeled the time course 140 

of cue repetition as a factor smooth (which has a similar, but potentially non-linear effect as adding a random 141 

intercept and a random slope) for each participant for each block, allowing for the possibility that condition 142 

differences were different in different participants in different blocks (equivalent to a full random-effects 143 

structure). We used a scaled t-distribution instead of a Gaussian distribution for the RT variable as it led to 144 

lower AIC values. We also investigated whether fit further improved by adding an AR(1) auto-regressive 145 

model, which was not the case. For all fitted models, We visually checked that residuals were approximately 146 

normally distributed using quantile-quantile plots and whether auto-correlation was near zero using auto-147 

correlation plots (van Rij et al., 2019). 148 

The model testing for differences between cue conditions suggested that RTs overall significantly 149 

decreased over time in all conditions (see Table S10; Fig. S03A). Further, RTs started to differ between cue 150 

conditions from repetition 1 or 2 onwards (see Table S11). Overall, RTs were faster for responses to Win 151 

than Avoid cues and faster for (correct) responses to Go cues than (incorrect) responses to NoGo cues. 152 

Overall, RT differences between conditions persisted throughout the block. 153 

The model testing for differences between stakes levels suggested again that RTs overall 154 

significantly decreased over time in both conditions (Table S10; Fig. S03B). Furthermore, throughout the 155 
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block, RTs were slower for responses on high-stakes trials than for responses on low-stakes trials (Table 156 

S11). This difference persisted throughout the block. 157 

Finally, the model testing for differences between congruency conditions and stakes levels found 158 

again a significant decrease in RTs over time (Table S10; Fig. S03C). RTs were slower for responses to 159 

incongruent than to congruent cues, and slower on high-stakes trials than on low-stakes trials. Importantly, 160 

RTs were slower on high-stakes trials compared to low-stakes trials both for congruent and for incongruent 161 

cues, similarly, although this differences tended to be bigger for incongruent trials. These differences 162 

persisted throughout the task. 163 

In sum, these results show that condition differences and differences between stakes in RTs emerge 164 

on the very first trials (cue repetitions) of a task and persist until the end of a block, with little change in these 165 

condition differences. 166 

 

Figure S03. Time course of RTs over cue repetitions within a block as predicted by a generalized additive mixed-effects 

model, separated by conditions. Overall, RTs speed up over time. A. Differences between cue conditions as predicted by 

the fit of a . RTs are significantly faster for responses to Win than responses to Avoid cues, and faster for (correct) responses 

to Go cues than (incorrect) responses to NoGo cues throughout a block. B. Differences between stakes levels. RTs are 

significantly slower on high-stakes trials compared to low-stakes trials throughout a block. C. Differences between stakes 

levels separately per condition. Both for congruent and incongruent cues, RTs on high-stakes trials are significantly slower 

than RTs on low-stakes trials. This difference tends to be larger for incongruent cues. 
 167 

 

Model 

Parametric coefficient  

(Linear change within condition) 

Smooth 

(non-linear change within each condition) 

Cue conditions:   

Go-to-Win t(3, 0.103) = 115.249, p < .001 F(3.094, 3.788) = 27.370, p < .001 

Go-to-Avoid t(3, 0.103) = 22.778, p < .001 F(1.000, 1.000) = 35.715, p < .001 

NoGo-to-Win t(3, 0.103) = 8.036, p < .001 F(2.497, 3.061) = 26.894, p < .001 

NoGo-toAvoid t(3, 0.103) = 12.887, p < .001 F(2.963, 3.629) = 1.530, p = .107 

Stakes:   

High t(3, 0.107) = 122.148, p < .001 F(2.266, 2.746) = 35.926, p < .001 

Low t(3, 0.107) = -9.346, p < .001 F(2.857, 3.478) = 24.505, p < .001 

Congruency x Stakes:   

Congruent /high t(3, 0.104) = 108.940, p < .001 F(2.426, 2.973) = 30.546, p < .001 

Congruent/ low t(3, 0.104) = -4.957, p < .001 F(2.679, 3,284) = 22.242, p < .001 

Incongruent/ high t(3, 0.104) = 15.148, p < .001 F(1.000, 1.000) = 44.597, p < .001 

Incongruent/ low t(3, 0.104) = 6.496, p < .001 F(1.947, 2.381) = 15.505, p < .001 

Table S10. Results from generalized additive mixed models (GAMMs) with separate smooth per condition. The parametric term reflects a 

linear change in time, while the smooth terms reflects any non-linear changes. Both add up to the total term.  
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Model 

Parametric coefficient  

(Intercept difference) 

Smooth 

(non-linear differences) 

Windows of 

significant 

differences 

Cue conditions:    

G2W – G2A t(3, 0.096) = 23.320, p < .001 F(3.779, 4.618) = 5.052, p < .001 1 – 20 

G2W – NG2W t(3, 0.081) = 8.383, p < .001 F(1.000, 1.000) = 0.606, p = .436 0 – 20 

G2W – NG2A t(3, 0.081) = 12.400, p < .001 F(3.255, 3.933) = 14.710, p < .001 2 – 20 

G2A – NG2W t(3, 0.108) = -9.870, p < .001 F(2.587, 3.168) = 5.080, p = .001 2 – 20 

G2A – NG2A t(3, 0.112) = 3.234, p = .001 F(2.878, 3.476) = 7.412, p < .001 0 – 2, 5 – 16 

NG2W – NG2A t(3, 0.098) = 6.939, p < .001 F(3.376, 4.042) = 11.760, p < .001 0 – 1, 3 – 20 

Stakes:    

High – Low t(3, 0.107) = -9.317, p < .001 F(1.424, 1.706) = 1.715, p = .278 0 – 20 

Congruency x Stakes:    

Cong/High – Cong/Low t(3, 0.081) = -4.997, p < .001 F(1.000, 1.000) = 0.039, p = .844 0 – 20 

Incong/High – Incong/Low t(3, 0.108) =-8.337, p < .001 F(1.000, 1.000) = 0.369, p = .543 0 – 20  

Cong/High – Incong/High t(3, 0.999) = 15.430, p < .001 F(1.711, 2.085) = 2.757, p = .061 0 – 20 

Cong/Low – Incong/Low t(3, 0.102) = 11.470, p < .001 F(1.000, 1.000) = 5.196, p = .023 0 – 20 

Table S11. Results from generalized additive mixed models (GAMMs) with difference smooths between two conditions. The parametric term 

reflects a linear difference between conditions, while the smooth terms reflects any non-linear difference. Both add up to the total term. The 

time window of significant condition differences is automatically returned by the model. 
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 M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 

WAIC 14501 9284 8011 7029 7023 6848 7082 6996 6821 7025 6843 6682 

LOO-IC 14365 8970 7611 6734 6656 6512 6722 6706 6420 6646 6494 6278 

α 2.011 

[1.97, 

2.02] 

1.377 

[1.372, 

1.404] 

1.466 

[1.449, 

1.482] 

1.442 

[1.428,  

1.456] 

 1.409 

[1.397, 

1.421] 

1.430 

[1.417, 

1.444] 

1.444 

[1.430, 

1.457] 

  1.408 

[1.396, 

1.421] 

1.379 

[1.367, 

1.390] 

αLow     1.406 

[1.393, 

1.420] 

   1.375 

[1.361, 

1.389] 

1.410 

[1.397, 

1.424] 

  

αHigh     1.479 

[1.466, 

1.492] 

   1.429 

[1.414, 

1.444] 

1.475 

[1.462, 

1.488] 

  

τ 0.128 

[0.119, 

0.136] 

0.234 

[0.226, 

0.241] 

0.228 

[0.220, 

0.236] 

0.232 

[0.224, 

0.239] 

0.233 

[0.226, 

0.240] 

 0.234 

[0.227, 

0.241] 

0.231 

[0.224, 

0.239] 

 0.233 

[0.225, 

0.240] 

  

τLow      0.237 

[0.230, 

0.245] 

  0.243 

[0.236, 

0.250] 

 0.238 

[0.231, 

0.245] 

0.244 

[0.237, 

0.251] 

τHigh      0.249 

[0.242, 

0.256] 

  0.247 

[0.240, 

0.254] 

 0.249 

[0.241, 

0.256] 

 

τHigh/Cong            0.266 

[0.260, 

0.273] 

τHigh/Incong            0.264 

[0.256, 

0.271] 

β 0.061 

[0.058, 

0.063] 

0.259 

[0.251, 

0.267] 

 0.251 

[0.244, 

0.258] 

0.250 

[0.243, 

0.257] 

0.264 

[0.257, 

0.270] 

 0.249 

[0.243, 

0.256] 

0.266 

[0.259, 

0.273] 

0.250 

[0.243, 

0.256] 

0.264 

[0.257, 

0.271] 

0.277 

[0.270, 

0.284] 

βWin   0.318 

[0.308, 

0.328] 

         

βAvoid   0.167 

[0.161, 

0.172] 

         

βLow       0.268 

[0.262, 

0.274] 

     

βHigh       0.247 

[0.241, 

0.253] 

     

δInt 3.617 

[3.558, 

3.675] 

1.358 

[1.310, 

1.407] 

1.542 

[1.483, 

1.602] 

         

δWin    2.086 

[2.018, 

2.152] 

2.100 

[2.032, 

2.167] 

2.037 

[1.890, 

2.105] 

2.041 

[1.971, 

2.112] 

2.159 

[2.091, 

2.228] 

2.026 

[1.957, 

2.094] 

2.130 

[2.061, 

2.199] 

2.074 

[2.005, 

2.142] 

1.981 

[1.910, 

2.053] 

δAvoid    0.796 

[0.757, 

0.834] 

0.803 

[0.765, 

0.841] 

0.736 

[0.698, 

0.774] 

0.763 

[0.726, 

0.799] 

0.867 

[0.827, 

0.908] 

0.727 

[0.691, 

0.764] 

0.831 

[0.791, 

0.871] 

0.774 

[0.736, 

0.813] 

0.684 

[0.645, 

0.723] 

δSlope  6.823 

[6.354, 

7.267] 

6.283 

[5.872, 

6.681] 

6.093 

[5.718, 

6.446] 

6.149 

[5.773, 

6.508] 

6.191 

[5.810, 

6.550] 

6.102 

[5.734, 

6.458] 

6.109 

[5.741, 

6.464] 

6.218 

[5.834, 

6.590] 

6.151 

[5.777, 

6.510] 

6.219 

[5.834, 

6.586] 

6.273 

[5.896, 

6.633] 

δHigh        -0.128  

[-0.148,  

-0.108] 

 -0.054  

[-0.076,  

-0.033] 

-0.075  

[-0.096, 

-0.054] 

 

ε  0.100 

[0.088, 

0.110] 

0.102 

[0.092, 

0.112] 

0.121 

[0.110, 

0.131] 

0.121 

[0.109, 

0.131] 

0.120 

[0.108, 

0.130] 

0.120 

[0.109, 

0.130] 

0.122 

[0.110, 

0.132] 

0.120 

[0.109, 

0.130] 

0.121 

[0.109, 

0.131] 

0.120 

[0.109, 

0.131] 

0.119 

[0.108, 

0.129] 

Table S12. Mean [25th percentile, 75th percentile] of the posterior densities of group-level parameters.  α = decision threshold, τ = non-

decision time, β = starting point bias, δ = drift rate, ε = learning rate. WAIC and LOO-IC are reported as measures of model fit, with 

smaller values indicating a better fit. 
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Figure S04. Posterior densities of the group-level parameters of the winning model M12. α = decision threshold, τ = non-

decision time, β = starting point bias, δ = drift rate, ε = learning rate. 

 196 

Figure S05. Posterior predictive checks for data simulated from the winning model M12. A. Both in empirical data (left 

panel) and data simulated from the winning model M12 (right panel), (simulated) participants performed more Go responses 

to Go than NoGo cues (learning) and more Go responses to Win than Avoid cues (Pavlovian bias). Simulated data matched 

the empirical data pattern. B. Both in empirical and simulated data, (simulated) participants showed faster responses to Go 

than NoGo cues and to Win than Avoid cues. Simulated data matched the empirical data pattern.  C. Both in empirical and 

simulated data, (simulated) participants performed more accurately for congruent than incongruent cues, with no difference 

between high and low stakes. D. Both in empirical and simulated data, (simulated) participants performed faster for 

congruent than incongruent cues and under low compared to high stakes. In empirical participants, the stakes effect was 

stronger for incongruent than congruent cues, but this difference was somewhat underestimated by the winning model M12. 
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Figure S06. Parameter recovery results for the winning model M12. The correlation between generative and fitted 

parameters is overall very high. Recovery is overall very high. It is least optimal (but still strongly significant) for δSlope and 

ε, which trade off against each other (see Fig. 4D main text). α = decision threshold, τ = non-decision time, β = starting point 

bias, δ = drift rate, ε = learning rate. 
 198 

Figure S07. Forward and inverse confusion matrices from model recovery of all models and of nested sub-versions of the 

winning model M12. A. The forward confusion matrix displays the conditional probabilities that model Y is the best fitting 

model (columns) if model X (rows) is the underlying generative model used to simulate a given data set (identical to Fig. 

4E main text). Rows sum to 100%. On-diagonal probabilities indicate the probability of reidentifying the generative model. 

All on-diagonal probabilities are significantly above chance (range 0.13–0.98; 95th percentile of permutation null 

distribution: p = 0.10). Especially recovery for M12 is exceptionally high (98%). B. The inverse confusion matrix displays 

the conditional probabilities that model X is the generative model (rows) if model Y (rows) is the best fitting model for a 

given data set. Columns sum to 100%. On-diagonal probabilities indicate the probability of reidentifying the generative 

model. All on-diagonal probabilities are significantly above chance (range 0.30–1.00; 95th percentile of permutation null 

distribution: p = 0.10). C. Forward confusion matrix only for the five models that are nested sub-versions of M12 (i.e., M1, 

M2, M4, M6, M12). Recovery is overall much higher (range 0.44–0.99; 95th percentile of permutation null distribution: p = 

0.22). D. Inverse confusion matrix only for the five models that are nested sub-versions of M12. Recovery is overall much 

higher (range 0.58–0.99; 95th percentile of permutation null distribution: p = 0.22). 
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