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Prefrontal signals precede striatal signals for
biased credit assignment in motivational
learning biases

Johannes Algermissen 1 , Jennifer C. Swart1, René Scheeringa1,2,
Roshan Cools 1,3 & Hanneke E. M. den Ouden 1

Actions are biased by the outcomes they can produce: Humans aremore likely
to show action under reward prospect, but hold back under punishment
prospect. Such motivational biases derive not only from biased response
selection, but also from biased learning: humans tend to attribute rewards to
their own actions, but are reluctant to attribute punishments to having held
back. The neural origin of these biases is unclear. Specifically, it remains open
whether motivational biases arise primarily from the architecture of sub-
cortical regions or also reflect cortical influences, the latter being typically
associated with increased behavioral flexibility and control beyond stereo-
typed behaviors. Simultaneous EEG-fMRI allowed us to track which regions
encoded biased prediction errors in which order. Biased prediction errors
occurred in cortical regions (dorsal anterior and posterior cingulate cortices)
before subcortical regions (striatum). These results highlight that biased
learning is not amere feature of thebasal ganglia, but arises throughprefrontal
cortical contributions, revealing motivational biases to be a potentially flex-
ible, sophisticated mechanism.

Human action selection is biased by potential action outcomes: reward
prospect drives us to invigorate action, while threat of punishment
holds us back1–3. These motivational biases have been evoked to explain
why humans are tempted by reward-related cues signaling the chance to
gain food, drugs, or money, as they elicit automatic approach behavior.
Conversely, punishment-related cues suppress action and lead to
paralysis, whichmay even lie at the core ofmental health problems such
as phobias and mood disorders4,5. While such examples highlight the
potential maladaptiveness of biases in some situations, they confer
benefits in other situations: Biases could provide sensible “default”
actions before context-specific knowledge is acquired1,6. They may also
provide ready-made alternatives to more demanding action selection
mechanisms, especially when speed has to be prioritized7.

Previous research has assumed that motivational biases arise
because the valence of prospective outcomes influences action

selection8. However, we have recently shown that not only action
selection, but also the updating of action values based on obtained
outcomes is subject to valence-dependent biases:3,9,10 humans are
more inclined to ascribe rewards to active responses, but have pro-
blems with attributing punishments to having held back. On the one
hand, such biased learning might be adaptive in combining the flex-
ibility of instrumental learning with somewhat rigid “priors” about
typical action-outcome relationships. Exploiting lifetime (or evolu-
tionary) experience might lead to learning that is faster and more
robust to environmental “noise”. On the other hand, biases might be
responsible for phenomena of “animal superstition” like negative auto-
maintenance. Studies of this phenomenon used strict omission sche-
dules in which reward were never delivered on trials on which animals
showed an action (key peck, button press), but only when animals
inhibited responding over a given time period. Still, animals showed
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continued key picking in such paradigms, which might either reflect a
strong “prior belief” that any situation in which rewards were available
requires active work to obtain those, or vice versa an inability to
attribute rewards to having held back one’s actions1,11,12. While reward
attainment can lead to an illusory sense of control over outcomes,
control is underestimated under threat of punishment: Humans find it
hard to comprehend how inactions can cause negative outcomes,
which makes them more lenient in judging harms caused by others’
inactions13,14. Taken together, also credit assignment is subject to
motivational biases, with enhanced credit for rewards given to actions,
but diminished credit for punishments given to inactions.

While evident in behavior, the neural mechanisms subserving
such biased credit assignment remain elusive. Previous fMRI studies
have studied neural correlates of motivational biases in action selec-
tion at the time of cue presentation, finding that the striatal BOLD
signal is dominatedby the action rather than the cue valence8,15,16.More
recently, we have reported evidence for cue valence signals in ven-
tromedial prefrontal cortex (vmPFC) and anterior cingulate cortex
(ACC), which putatively bias action selection processes in the
striatum17. The same regions might be involved in motivational biases
in learning during outcome processing, given the prominent role of
the basal ganglia system not only in action selection, but also learning.
Influential computational models of basal ganglia function18,19 (hen-
ceforth called “asymmetric pathways model”) predict such motiva-
tional learning biases: Positive prediction errors, elicited by rewards,
lead to long-term potentiation in the striatal direct “Go” pathway (and
long term depression in the indirect pathway), allowing for a particu-
larly effective acquisition of Go responses after rewards. Conversely,
negative prediction errors, elicited by punishments, lead to long term
potentiation in the “NoGo” pathway, impairing the unlearning of NoGo
responses after punishments. This account suggests that motivational
biases arise within the same pathways involved in standard reinforce-
ment learning (RL). An alternative candidate model is that biases arise
through themodulationof these RL systems by external areas that also
track past actions, putatively the prefrontal cortex (PFC). Past research
has suggested that standard RL can be biased by information stored in
PFC, such as explicit instructions20,21 or cognitive map-like models of
the environment22–24. Most notably, the ACC has been found to reflect
the impact of explicit instructions21 and of environmental changes25,26

on prediction errors.
Both candidate models predict that BOLD signal in striatum

should be better described by biased compared with “standard” pre-
diction errors. In addition, the model proposing a prefrontal influence
on striatal processing makes a notable prediction about the timing of

signals: information about the selected action and the obtained out-
come should be present first in prefrontal circuits to then later affect
processes in the striatum. While fMRI BOLD recordings allow for
unequivocal access to striatal activity, the sluggish nature of the BOLD
signal prevents clear inferences about temporal precedence of signals
from different regions. We thus combined BOLD with simultaneous
EEG recordings which allowed us to precisely characterize learning
signals in both space and time.

The key question is whether biased credit assignment arises
directly from biased RL through the asymmetric pathways in the
striatum, or whether striatal RL mechanisms are biased by external
prefrontal sources, with the dACC as likely candidate. To this end,
participants performed a motivational Go/ NoGo learning task that is
well-established to evoke motivational biases3,9,27. We expected to
observe biased PEs in striatum and frontal cortical areas. By simulta-
neously recording fMRI and EEG and correlating trial-by-trial BOLD
signal with EEG time-frequency power, we were able to time-lock the
peaks of EEG-BOLD correlations for regions reflecting biased PEs and
infer their relative temporal precedence. We focused on two well-
established electrophysiological signatures of RL, namely theta and
delta power28–33 as well as beta power28,34 over midfrontal electrodes.

Here, we show that motivational biases in behavior are best
described by biased learning as predicted by the asymmetric cortico-
striatal pathways model18,19, which predicts better learning of actions
following reward and failure to unlearn inaction following a loss. This
finding provides a putative computational mechanism for how moti-
vational action biases can arise through learning and aggravate with
increased experience. We further show that BOLD signal in a range of
cortical and subcortical regions is better explained by biased than by
standard prediction errors. Notably, electrophysiological correlates of
cortical prediction errors arise earlier than correlates of subcortical
prediction errors, consistent with an influence of cortical over sub-
cortical regions in biasing the learning of actions and inactions. Taken
together, this work provides evidence for a cortico-striatal basis of
biased learning of action-outcome contingencies that may drive the
formation of motivational action biases.

Results
Thirty-six participants performed a motivational Go/ NoGo learning
task3,9 in which required action (Go/NoGo) and potential outcome
(reward/ punishment) were orthogonalized (Fig. 1A–D). They learned
by trial-and-error for each of eight cues whether to perform a left
button press (GoLEFT), right button press (GoRIGHT), or no button press
(NoGo), and whether a correct action increased the chance to win a
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Fig. 1 | Motivational Go/ NoGo learning task design. A On each trial, a Win or
Avoid cue appeared; valence of the cuewasnot signaled but shouldbe learned.Cue
offset was also the response deadline. Response-dependent feedback followed
after a jittered interval. Each cue had only one correct action (GoLEFT, GoRight, or
NoGo), whichwas followed by the positive outcome 80% of the time. ForWin cues,
actions could lead to rewards or neutral outcomes; for Avoid cues, actions could
lead to neutral outcomes or punishments. Rewards and punishments were repre-
sented by money falling into/ out of a can. B There were eight different cues,

orthogonalizing cue valence (Win versus Avoid) and required action (Go versus
NoGo). The motivationally incongruent cues (for which the motivational action
tendencies were incongruent with the instrumental requirements) are highlighted
in gray. C Feedbackwas probabilistic: Correct actions toWin cues led to rewards in
80% of cases, but neutral outcomes in 20%of cases. For Avoid cues, correct actions
led to neutral outcomes in 80% of cases, but punishments in 20% of cases. For
incorrect actions, these probabilities were reversed. Figure previously pub-
lished in17.
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reward (Win cues) or to avoid a punishment (Avoid cues). Correct
actions led to 80% positive outcomes (reward, no punishment), with
only 20% positive outcomes for incorrect actions. Participants per-
formed two sessions of 320 trials with separate cue sets, which were
counterbalanced across participants.

Regression analyses of behavior
We performed regression analyses to test whether (a) responses were
biased by the valence of prospective outcomes (Win/Avoid), reflecting
biased responding and/or learning, and (b) whether response repeti-
tion after positive vs. negative outcomes was biased by whether a Go
vs. NoGo response was performed, selectively reflecting biased
learning.

For the first purpose, we analyzed choice data (Go/NoGo) using
mixed-effects logistic regression that included the factors required
action (Go/NoGo; note that this approach collapses across GoLEFT and
GoRIGHT responses), cue valence (Win/Avoid), and their interaction
(also reported in)17. Participants learned the task, i.e., they performed
more Go responses towards Go than NoGo cues (main effect of
required action: χ2(1) = 32.008, p <0.001, b =0.815, 95%-CI [0.594,
1.036], two-tailed; for all reported logistic regression models,
assumptions of independence of residuals, low regressor collinearity,
and linearity of log odds in regressorswere not violated). In contrast to
previous studies3,9, learning did not asymptote (Fig. 2A), which pro-
vided greater dynamic range for the biased learning effects to surface.
Furthermore, participants showed a motivational bias, i.e., they

performed more Go responses to Win than Avoid cues (main effect of
cue valence, χ2(1) = 23.695, p <0.001, b = 0.423, 95%-CI [0.280, 0.566],
two-tailed). Replicating other studies with this task, there was no sig-
nificant interaction between required action and cue valence
(χ2(1) = 0.196, p = 0.658, b =0.030, 95%-CI [−0.103, 0.163], two-tailed;
Fig. 2A, B), i.e., there was no evidence for the effect of cue valence
(motivational bias) differing in size between Go or NoGo cues.

Secondly, as a proxy of (biased) learning, we analyzed cue-based
response repetition (i.e., the probability of repeating a response on the
next encounter of the same cue) as a function of outcome valence
(positive vs negative outcome), performed action (Go vs. NoGo), and
outcomesalience (salient: rewardor punishment vs. neutral: no reward
or no punishment). As expected, participants were more likely to
repeat the same response following a positive outcome (main effect of
outcome valence: χ2(1) = 45.595, p <0.001, b =0.504, 95%-CI [0.4000,
0.608], two-tailed). Most importantly, after salient outcomes, partici-
pants adjusted their responses to a larger degree following Go
responses than NoGo responses, revealing the presence of a learning
bias (Fig. 2C; interaction of valence x action x salience: χ2(1) = 19.732,
p <0.001,b =0.248, 95%-CI [0.154, 0.342], two-tailed).When selectively
analyzing trials with salient outcomes only, rewards (compared to
punishments) led to a higher proportion of choice repetitions fol-
lowing Go relative to NoGo responses (valence x response:
χ2(1) = 17.798, p < 0.001, b = 0.308, 95%-CI [0.183, 0.433], two-tailed;
valence effect for Go only: χ2(1) = 53.932, p <0.001, b = 1.276, 95%-CI
[1.051, 1.501], two-tailed; valence effect for NoGo only: χ2(1) = 18.228,
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Fig. 2 | Behavioral performance. ATrial-by-trial proportionofGo responses (error
bands are ±SEM across participants, dots indicate individual participants, n = 36)
for Go cues (solid lines) and NoGo cues (dashed lines). The motivational bias was
already present from very early trials onwards, as participants made more Go
responses toWin thanAvoidcues (i.e., green lines are above red lines).Additionally,
participants clearly learn whether to make a Go response or not (proportion of Go
responses increases for Go cues and decreases for NoGo cues). BMean (error bars
are ±SEM across participants, n = 36) proportion Go responses per cue condition
(points are individual participants’ means). C Probability to repeat a response
(“stay”) on the next encounter of the same cue as a function of action and outcome
(error bars are ±SEM across participants, n = 36). Learning was reflected in higher
probability of staying after positive outcomes than after negative outcomes (main

effect of outcome valence). Biased learning was evident in learning from salient
outcomes, where this valence effect was stronger after Go responses than NoGo
responses. Dashed line indicates chance level choice (pStay = 0.33). D Log-model
evidence favors the asymmetric pathwaysmodel (M5) over simplermodels (M1-M4;
error bars are ±SEM across participants, n = 36). E–G Trial-by-trial proportion of Go
responses, mean proportion Go responses, and probability of staying based on
one-step-ahead predictions using parameters (hierarchical Bayesian inference) of
the winning model (asymmetric pathways model, M5; error bars are ±SEM across
simulated agents, n = 36). H Model frequency and protected exceedance prob-
ability indicate best fit formodelM5 (asymmetric pathways model), in line with log
model evidence. Source data are provided as a Source Data file.
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p <0.001, b = 0.637, 95%-CI [0.388, 0.886], two-tailed; see full results in
Supplementary Table 1).

Taken together, these results suggested that behavioral adapta-
tion following rewards and punishments was biased by the type of
action that led to this outcome (Go or NoGo). However, this analysis
only considered behavioral adaptation on the next trial, and could not
pinpoint the precise algorithmic nature of this learning bias. More
importantly, it did not provide trial-by-trial estimates of action values
as required for model-based fMRI and EEG analyses to test for regions
or time points that reflected biased learning. We thus analyzed the
impact of past outcomes on participants’ choices using computational
RL models.

Computational modeling of behavior
In line with previous work3,9, we fitted a series of increasingly complex
RL models. We started with a simple Q-learning model featuring
learning rate and feedback sensitivity parameters (M1). We next added
a Go bias, capturing participants’ overall propensity to make Go
responses (M2), and a Pavlovian response bias (M3), reflecting parti-
cipants’ propensity to adjust their likelihood of emitting a Go response
in response to Win vs. Avoid cues3. Alternatively, we added a learning
bias (M4), amplifying the learning rate after rewarded Go responses
and dampening it after punished NoGo responses3, in line with the
asymmetric pathways model. In the final model (M5), we added both
the response bias and the learning bias. For the full model space (M1-
M5) and model definitions, see the Methods section.

Model comparison showed clear evidence in favor of the full
asymmetric pathways model featuring both response and learning
biases (M5; model frequency: 86.43%, protected exceedance prob-
ability: 100%, see Fig. 2D, H; for model parameters and fit indices, see
Supplementary Table 2; for parameter recovery analyses, see Supple-
mentary Note 6 with Supplementary Fig. 5). Posterior predictive
checks involving one-step-ahead predictions and model simulations
showed that this model captured key behavioral features (Fig. 2E, F),
includingmotivational biases and a greater behavioral adaptation after
Go responses followed by salient outcomes than after NoGo responses
followed by salient outcomes (Fig. 2G). This pattern could not be
captured by an alternative learning bias model based on the idea that
active responses generally enhance credit assignment35 (Supplemen-
tary Note 7 with Supplementary Fig. 6).

One feature of the behavioral data that was not well captured by
the asymmetric pathwaysmodelwas a high tendency of participants to
repeat responses (“stay”) to the same cue irrespective of outcomes
(see Fig. 2C, G). This tendency was stronger for Win than Avoid cues.
We explored three additional models featuring supplementary
mechanisms to account for this behavioral pattern (Supplementary
Note 8with Supplementary Fig. 7). All thesemodels fitted the data well
and captured the propensity of staying better thanM5; however, these
models overestimated the proportion of incorrect Go responses.
Model-based fMRI analyses based on these models led to results lar-
gely identical to those obtained with M5 (Supplementary Note 9 with
Supplementary Fig. 8). We thus focused on M5, which relied on only a
single mechanism (i.e., biased learning from rewarded Go and pun-
ishment NoGo actions).

fMRI: Basic quality control analyses
First, we performed a GLM as a quality-check to test which regions
encoded positive (rewards, no punishments) vs. negative (no reward/
punishment) outcomes in a “model-free” way, independent of any
model-basedmeasure derived from a RLmodel (for full description of
the GLM regressors and contrasts, see Supplementary Table 4). Posi-
tive outcomes elicited a higher BOLD response in regions including
vmPFC, ventral striatum, and right hippocampus, while negative out-
comes elicited higher BOLD in bilateral dorsolateral PFC (dlPFC), left

ventrolateral PFC, and precuneus (Fig. 3A, see full report of significant
clusters in Supplementary Table 6).

We also assessed which regions encoded Go vs. NoGo as well as
GoLEFT vs. GoRIGHT responses. There was higher BOLD for Go than
NoGo responses at the time of response in dorsal ACC (dACC), stria-
tum, thalamus,motor cortices, and cerebellum,whileBOLDwashigher
for NoGo than Go responses in right IFG (see below; Supplementary
Table 6)17. For lateralized Go responses, there was higher BOLD signal
in contralateral motor cortex and operculum as well as ipsilateral
cerebellum when contrasting hand responses against each other (see
below). These results are in line with previous results on outcome
processing and response selection and thus assure the general data
quality.

fMRI: Biased learning in prefrontal cortex and striatum
To test which brain regions were involved in biased learning, we per-
formed a model-based GLM featuring the trial-by-trial PE update as a
parametric regressor (see GLM notation in Supplementary Table 3).
We used the group-level parameters of the best fitting computational
model (M5) to compute trial-by-trial belief updates (i.e., prediction
error * learning rate) for every trial for every participant. In assessing
neural signatures of biased learning, we faced the complication that
standard (Q-learning in M1) and biased PEs (winning model M5) were
highly correlated. A mean correlation of 0.92 across participants
(range 0.88–0.95) made it difficult to neurally distinguish biased from
standard learning. To circumvent this collinearity problem, we
decomposed the biased PE (computed using model M5) into the
standard PE (computed using model M1) plus a difference term:22,36

PEBIAS =PESTD + PEDIF . A neural signature of biased learning should
significantly—andwith the same sign—encodeboth components of this
biased PE term. Standard PEs and the difference term were uncorre-
lated (mean correlation of −0.02 across participants; range
−0.33–0.24; see Supplementary Note 10 with Supplementary Figs. 9
and 10 for a graphical illustration of this procedure). We tested for
biased prediction errors PEBIAS by testing which regions significantly
encoded the conjunction of both its components, i.e., the significant
encoding of both PESTD and PEDIF. Dissociating two alternative learning
signals by decomposing one into the other plus a difference term is an
established procedure to disentangle the contributions of two highly
correlated signals22,36. It has an effect highly similar to orthogonalizing
regressors37 while maintaining interpretability in that both regressors
(PESTD and PEDIF) add up to the term of interest (PEBIAS). Significant
encoding of both components (with the same sign) provides strong
evidence for encoding of biased prediction errors PEBIAS. The PEDIF
term itself has no substantive neural interpretation; it is merely an
implicit model comparison of a null model (PESTD) against a full model
(PEBIAS). Intuitively, for voxels for which both PESTD and PEDIF are sig-
nificant, one can conclude that the BOLD signal correlates with the full
biased prediction error term PEBIAS, and that this correlation is sig-
nificantly stronger than for the baseline prediction error term PESTD.

While PESTD was encoded in a range of cortical and subcortical
regions (Fig. 3B) previously reported in the literature38, significant
encoding of both PESTD and PEDIF (conjunction) occurred in striatum
(caudate, nucleus accumbens), dACC (area 23/24), perigenual ACC
(pgACC; area 32d bordering posterior vmPFC), posterior cingulate
cortex (PCC), left motor cortex, left inferior temporal gyrus, and early
visual regions (Fig. 3C; see full report of significant clusters in Sup-
plementary Table 5). Thus, BOLD signal in these regions was better
described (i.e., more variance explained) by biased learning than by
standard prediction error learning.

EEG: Biased learning in midfrontal delta, theta, and beta power
Similar to the fMRI analyses, we next tested whether midfrontal power
encoded biased PEs rather than standard PEs. While fMRI provides
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spatial specificity of where PEs are encoded, EEG power provides
temporal specificity of when signals encoding prediction errors
occur29,34. In line with our fMRI analysis, we used the standard PE term
PESTD and the difference to the biased PE term PEDIF as trial-by-trial
regressors for EEG power at each channel-time-frequency bin for each
participant and then performed cluster-based permutation tests
across the b-maps of all participants. Note that differently from BOLD
signal, EEG signatures of learning typically do not encode the full
prediction error. Instead, PE valence (better vs. worse than expected)
and PEmagnitude (saliency, surprise) have been found encoded in the
theta and delta band, respectively, but with opposite signs31–33. When
testing for parametric correlates of PE magnitude, we therefore con-
trolled for PE valence, thereby effectively testing for correlations with
the absolute PE magnitude (i.e., degree of surprise). Note that PE
valence was identical for standard and biased PEs. Thus, only PE
magnitude could distinguish both learning models.

Both midfrontal theta and beta power reflected outcome (PE)
valence: Theta power was higher for negative (non-reward and pun-
ishment) than for positive (reward and non-punishment) outcomes
(225–475ms, p =0.006, two-tailed; Fig. 4A, B), while beta power was
higher for positive than for negative outcomes (300–1,250ms,
p = .002, two-tailed; Fig. 4A, C). Differences in theta power were clearly
strongest over frontal channels, while differences in the beta range
were more diffuse, spreading over frontal and parietal channels
(Fig. 4B, C). All results held when the condition-wise ERP was removed
from thedata (see SupplementaryNote 12with Supplementary Fig. 13),
suggesting that differences between conditions were due to induced
(rather than evoked) activity (for results in the time domain, see Sup-
plementary Note 13 with Supplementary Figs. 14 and 15).

When testing for correlates of PEmagnitude, we controlled for PE
valence given that previous studies have reported TF correlates of
both PE valence and PE magnitude in a similar time and frequency
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Fig. 3 | BOLDsignal reflecting outcomeprocessing.BOLDeffects displayedusing
a dual-coding visualization: color indicates theparameter estimates andopacity the
associated z-statistics. Significant clusters are surrounded by black edges.
A Significantly higher BOLD signal for positive outcomes (rewards, no punish-
ments) compared with negative outcomes (no rewards, punishments) was present
in a range of regions including bilateral ventral striatum and vmPFC. Bar plots show
mean parameter estimates per condition (error bars are ±SEM across participants;
dots indicate individual participants, n = 34). Source data are provided as a Source
Data file. B BOLD signals correlated positively to “standard” RL prediction errors in

several regions, including the ventral striatum, dACC, vmPFC, and PCC. C Left
panel: Regions encoding both the standard PE term and the difference term to
biased PEs (conjunction) at different cluster-forming thresholds (1 <z < 5, color
coding; opacity constant). Clusters significant at a threshold of z > 3.1 are sur-
roundedbyblackedges. In bilateral striatum,dACC, pgACC, PCC, leftmotor cortex,
left inferior temporal gyrus, and primary visual cortex, BOLD was significantly
better explained by biased learning than by standard learning. Right panel: 3D
representation with all seven regions encoding biased learning (and used in fMRI-
informed EEG analyses).
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range, but with opposite signs31–33. Midfrontal delta power was indeed
positively correlated with the PEBIAS term (225–475ms; p =0.017, two-
tailed; Fig. 4D). Decomposition of the PEBIAS term into its constituent
terms showed that this correlation was not significant for the PESTD

term (p = 0.074, two-tailed, Fig. 4E) nor for the PEDIF term (p =0.185,
two-tailed; Fig. 4F). This result does not imply that the PEBIAS term
explained delta power significantly better than the PESTD term; it only
implies significant encoding of the PEBIAS term as suggested by the
model that best fitted the behavioral data, with no significant evidence
for a similar encoding of the conventional PESTD term. For a similar
observation in the time-domain EEG signal, see Supplementary Note 14
with Supplementary Fig. 16. Beyond delta power, beta power corre-
lated positively, though not significantly with PESTD (p =0.110, two-
tailed, Fig. 4E) and significantly negatively with PEDIF (p =0.001, two-
tailed, 425–850ms). Given these oppositely-signed correlations of its
constituents, the PEBIAS term did not significantly correlate with beta
power (p =0.550, two-tailed, Fig. 4D).

In sum, both midfrontal theta power (negatively) and beta power
(positively) encoded PE valence. In addition, delta power encoded PE
magnitude (positively). This encoding was only significant for biased
PEs, but not standard PEs. Taken together, as was the case for BOLD
signal, midfrontal EEG power also reflected biased learning. As a next
step,we testedwhether the identifiedEEGphenomenawerecorrelated
with trial-by-trial BOLD signal in identified regions. Crucially, this
allowed us to test whether EEG correlates of cortical learning precede
EEG correlates of subcortical learning.

Combined EEG-fMRI: prefrontal cortex signals precede striatum
during biased outcome processing
The observation that also cortical areas (dACC, pgACC, PCC) show
biased PEs is consistent with the “external model” of cortical signals
biasing learning processes in the striatum. However, this model makes
the crucial prediction that these biased learning signals should be
present first in cortical areas and only later in the striatum. Next, we
used trial-by-trial BOLD signal from those regions encoding biased PE
to predict midfrontal EEG power. By determining the time points at
which different regions correlated with EEG power, we were able to
infer the relative order of biased PE processing across cortical and
subcortical regions, revealing whether cortical processing preceded
striatal processing. We used trial-by-trial BOLD signal from the seven
regions encoding biased PEs, i.e., striatum, dACC, pgACC, PCC, left
motor cortex, left ITG, and primary visual cortex (see masks in Sup-
plementary Note 11 with Supplementary Figs. 11 and 12) as regressors
on average EEG power over midfrontal electrodes (Fz/ FCz/ Cz; see
Supplementary Note 15 with Supplementary Fig. 17 for a graphical
illustration of this approach).We performed analyses with andwithout
PEs included in the model, which yielded identical results and sug-
gested that EEG-fMRI correlations did not merely result from PE pro-
cessing as a “common cause” driving signals in both modalities.
Instead, EEG-fMRI correlations reflected incremental variance
explained in EEG power by the BOLD signal in selected regions (even
beyond variance explained by the model-based PE estimates), pro-
viding the strongest test for the hypothesis that BOLD and EEG signal
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Fig. 4 | EEG time-frequency power over midfrontal electrodes (Fz/ FCz/
Cz) reflecting outcome processing. A Time-frequency plot (logarithmic y-axis)
displaying higher theta (4–8Hz) power for negative (non-reward for Win cues and
punishment for Avoid cues) outcomes and higher beta power (16–32Hz) for
positive (reward and non-punishment) outcomes. This contrast reflects EEG cor-
relates of PE valence (better vs. worse than expected). Black square dot boxes
indicate clusters above threshold that drive significance in a-priori defined fre-
quency ranges. B Theta power transiently increases for any outcome, but more so
for negative outcomes (especially punishments) around 225–475ms (p =0.006,
two-tailed) after feedback onset (error bands are ±SEM across participants, n = 32).
Black horizontal lines indicate the time range for which the cluster driving sig-
nificance was above threshold. C Beta power was higher for positive than negative

outcomesover a long timeperiod around300–1250ms (p =0.002, two-tailed) after
feedbackonset (error bandsare ±SEMacross participants,n = 32).D–FCorrelations
between midfrontal EEG power and model-based trial-by-trial PE magnitudes con-
trolling for PE valence (thus effectively testing for correlates of “absolute” PEs).
D displays the correlates of biased prediction errors PEBIAS, which are decomposed
into (E) PESTD based on the non-biased learning model M1, and (F) their difference
PEDIF : Solid black lines indicate clusters above threshold. Biased PEs were sig-
nificantly positively correlated withmidfrontal delta power (D). The correlations of
delta with the standard PEs (E) and the difference term to biased PEs (F) were
positive as well, though not significant. Beta power only significantly encoded the
difference term to biased PEs (F). **p <0.01, cluster-based permutation test. Source
data are provided as a Source Data file.
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reflect the same neural phenomenon. As the timeseries of all seven
regions were included in one single regression, their regression
weights reflected each region’s unique contribution, controlling for
any shared variance. In line with the “external model”, BOLD signal
from prefrontal cortical regions correlated with midfrontal EEG power
earlier after outcome onset than did striatal BOLD signal:

First, dACC BOLD was significantly negatively correlated with
alpha/ theta power early after outcome onset (100–575ms, 2–17 Hz,
p =0.016, two-tailed; Fig. 5A). This cluster started in the alpha/ theta
range and then spread into the theta/delta range (henceforth called
“lower alpha band power”). It was not observed in the EEG-only ana-
lyses reported above.

Second, while pgACC BOLD did not correlate significantly with
midfrontal EEG power (p = 0.184, two-tailed), BOLD in PCC was nega-
tively correlated with theta/ delta power (Fig. 5B; 175–500ms, 1–6Hz,
p =0.014, two-tailed). This finding bore resemblance in terms of time-
frequency space to the cluster of (negative) PE valence encoding in the
theta band and (positive) PE magnitude encoding in the delta band
identified in the EEG-only analyses (Fig. 4A). Complementary to the
fMRI-informed EEG analyses, we also performed independent EEG-
informed fMRI analyses,which showed the robustness of this EEG-fMRI
correlation. We used the trial-by-trial EEG signal in the cluster identi-
fied in the EEG-only analyses (see Fig. 4A, B) to predict BOLD signal
across the brain (see Supplementary Note 15 with Supplementary
Fig. 18 for a graphical illustration of this approach). The EEG time-
frequency-mask used to create the EEG regressorwasdefinedbasedon

the EEG-only analyses (Fig. 4A, B) and thus blind to the result of the
fMRI-informed EEG analysis. We observed significant clusters of
negative EEG-BOLD correlation in vmPFC and PCC (Fig. 5F; Supple-
mentary Table 7). We thus discuss vmPFC and PCC together in the
following.

Third, there was a significant positive correlation between
striatal BOLD and midfrontal beta/ alpha power (driven by a cluster
at 100–800ms, 7–23 Hz, p = 0.010, two-tailed; Fig. 5C). This finding
bore resemblance in time-frequency space to the cluster of positive
PE valence encoding in beta power identified in the EEG-only ana-
lyses (Fig. 4A, C), but extended into the alpha range. Again, to
support the robustness of this finding, we used trial-by-trial mid-
frontal beta power in the cluster identified in the EEG-only analyses
(see Fig. 4A, C) to predict BOLD signal across the brain. Clusters of
positive EEG-BOLD correlations in right dorsal caudate (and left
parahippocampal gyrus) as well as clusters of negative correlations
in bilateral dorsolateral PFC (dlPFC) and supramarginal gyrus (SMG;
Fig. 5G; Supplementary Table 7) confirmed the positive striatal
BOLD-beta power association. Given that the striatum is far away
from the scalp and thus unlikely to be the source of midfrontal beta
power over the scalp, and given the assumption that trial-by-trial
variation in an oscillatory signal should correlate with BOLD signal
in its source39,40, we speculate that dlPFC and SMG (identified in the
EEG-informed fMRI analyses) are the sources of beta power over the
scalp and act as an “antenna” for striatal signals. In line with this
idea, previous studies have localized feedback-related beta power
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Fig. 5 | fMRI-informed EEG analyses. Unique temporal contributions of BOLD
signal in (A) dACC, (B) PCC, and (C) striatum to average EEG power overmidfrontal
electrodes (Fz/FCz/Cz). Group-level t-maps display the modulation of the EEG
power by trial-by-trial BOLD signal in the selected ROIs. dACC BOLD correlated
negatively with early alpha/ theta power 100–575ms, 2–17Hz, p =0.016, two-tailed,
PCC BOLD negatively with theta/ delta power (175–500ms, 1–6Hz, p =0.014, two-
tailed), and striatal BOLD positively with beta/ alpha power (100–800ms, 7–23Hz,
p =0.010, two-tailed). Areas surrounded by a black edge indicate clusters of |t | > 2
with p <0.05 (cluster-corrected). Topoplots indicate the topography of the
respective cluster. Source data are provided as a Source Data file.D Time course of
dACC, PCC, and striatal BOLD correlations, normalized to the peak of the time
course of each region. dACC-lower alpha band correlations emerged first, followed

by (negative) PCC-theta correlations and finally positive striatum-beta correlations.
The reverse approach using lower alpha (E), theta (F) andbeta (G) power as trial-by-
trial regressors in fMRI GLMs corroborated the fMRI-informed EEG analyses: Lower
alpha band power correlated negatively with the dACC BOLD, theta power nega-
tively with vmPFC and PCC BOLD, and beta power positively with striatal BOLD.
H Schematic overview of the main EEG-fMRI results: dACC encoded the previously
performed response and correlated with earlymidfrontal lower alpha band power.
vmPFC/ PCC (correlated with theta power) and striatum (correlated with beta
power) both encoded outcome valence, but had opposite effects on subsequent
behavior. Note that activity in these regions temporally overlaps; boxes are ordered
in temporal precedence of peak activity.
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in lateral frontal and parietal regions, both using simultaneous EEG-
fMRI41–43 and source-localization44,45.

Finally, regarding the other three regions that showed a sig-
nificant BOLD signature of biased PEs, BOLD in left motor cortex was
significantly negatively correlated with midfrontal beta power
(p = 0.002, two-tailed; around 0–625ms; Supplementary Note 16 with
Supplementary Fig. 19). There were no significant correlations
between midfrontal EEG power and left inferior temporal gyrus or
primary visual cortex BOLD (Supplementary Fig. 19). All results were
robust to different analysis approaches including shorter trial win-
dows, different GLM specifications, inclusion of task-condition and
fMRI motion realignment regressors, and individual modeling of each
region. TF results were not reducible to phenomena in the time
domain (Supplementary Note 17 with Supplementary Fig. 20).

In sum, therewere negative correlations betweendACCBOLD and
midfrontal lower alpha band power early after outcome onset, nega-
tive correlations between PCCBOLDandmidfrontal theta/ delta power
at intermediate time points, and positive correlations between striatal
BOLD and midfrontal beta power at late time points. This temporal
dissociation was especially clear in the time courses of the test statis-
tics for each region (thresholded at |t | > 2 and summed across fre-
quencies), for which the peaks of the cortical regions preceded the
peak of the striatum (Fig. 5D, H). Note that time-frequency power is
estimated over temporally extended windows (400ms in our case),
which renders any interpretation of the “onset” or “offset” of such
correlations more difficult. In sum, these results are consistent with an

“external model” of motivational biases arising from early cortical
processes biasing later learning processes in the striatum.

dACC BOLD andmidfrontal lower alpha band power encode the
previously performed action during outcome presentation
While the clusters of EEG-fMRI correlation in the theta/delta and beta
range matched the clusters identified in EEG-only analyses, the cluster
of negative correlations between dACC BOLD and early midfrontal
lower alpha band power was novel and did not match our expecta-
tions. Given that these correlations arose very soon after outcome
onset, we hypothesized that dACC BOLD and midfrontal lower alpha
band power might reflect a process occurring even before outcome
onset, such as the maintenance (“memory trace”) of the previously
performed response to which credit may later be assigned. We there-
fore assessed whether information of the previous response was pre-
sent in dACC BOLD and in the lower alpha band around the time of
outcome onset.

First, we tested for BOLD correlates of the previous response at
the time of outcomes (eight outcome-locked regressors for every Go/
NoGo x reward/no reward/no punishment/punishment combination)
while controlling for motor-related signals at the time of the response
(response-locked regressors for left-hand and right-hand button
presses). As previouslymentioned, at the time of responses, BOLDwas
higher for Go compared to NoGo responses in several regions
including dACC and striatum (Fig. 6C left panel), and BOLD in con-
tralateral motor cortex and operculumwas higher for Go responses of
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power in the lower alpha band was higher on trials with Go actions than on trials
with NoGo actions. The shape of this difference resembles the shape of dACC
BOLD-EEG TF correlations (small plot; note that this plot depicts BOLD-EEG cor-
relations, which were negative). Note that differences between Go and NoGo trials
occurred already before outcome onset in the alpha and beta range, reminiscent of
delay activity, but were not fully sustained throughout the delay between response
and outcome. B Midfrontal power in the lower alpha band per action x outcome
condition (error bands are ±SEM across participants, n = 32). Lower alpha band

power was consistently higher on trials with Go actions than on trials with NoGo
actions, starting already before outcome onset. Source data are provided as a
Source Data file. C BOLD signal differences between Go and NoGo actions (acti-
vation by either left or right Go actions compared to the implicit baseline in the
GLM, which contains the NoGo actions; left panel) and left vs. right hand responses
(right panel) at the time or responses. Response-locked dACC BOLD signal was
significantly higher for Go than NoGo actions. D BOLD signal differences between
Go and NoGo actions at the time of outcomes. Outcome-locked dACC BOLD signal
(and BOLD signal in other parts of cortex) was significantly lower on trials with Go
than on trials with NoGo actions. **p <0.01, cluster-based permutation test.
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one hand compared to Go responses of the other hand (Fig. 6C right
panel). In contrast, at the time of outcomes, there was higher BOLD
signal for NoGo than Go responses across several cortical and sub-
cortical regions, peaking in both the dACC and striatum (Fig. 6D). This
inversion of effects—higher BOLD for Go than NoGo responses at the
time of response (see quality checks), but the reverse at the time of
outcome—was also observed in the upsampled raw BOLD and was
independent of the response of the next trial (Supplementary Note 18
with Supplementary Fig. 21). In sum, largeparts of cortex, including the
dACC, encoded the previously performed response at the moment
outcomes were presented, in line with the idea that the dACC main-
tains a “memory trace” of the previously performed response.

Second, we tested for differences between Go and NoGo
responses at the time of outcomes in midfrontal broadband EEG
power. Power was significantly higher on trials with Go than on trials
with NoGo responses, driven by clusters in the lower alpha band
(spreading into the theta band; around 0.000–0.425 s, 1–11 Hz,
p =0.012, two-tailed) and in the beta band (around 0.200–0.450 s,
18–27Hz, p = 0.022, two-tailed; Fig. 6A, B). The first cluster matched
the time-frequency pattern of dACC BOLD-alpha power correla-
tions (Fig. 5A).

If this activity cluster contained a signature of the previously
performed response, it might have been present throughout the delay
between cue offset and outcome onset. When repeating the above
permutation test including the last second before outcome onset,
there were significant differences again, driven by a sustained cluster
in the beta band (−1–0 s, 13–33Hz, p = 0.002, two-tailed) and two
clusters in the alpha/ theta band (Cluster 1: −1.000– −0.275 s, 1–10Hz,
p =0.014, two-tailed; Cluster 2: −0.225–0.425 s, 1–11 Hz, p = 0.022, two-
tailed; Fig. 6B). These findings suggest that lower alpha band power
might reflect a sustained memory of the previously performed
response. Additional analyses (Supplementary Note 18 with Supple-
mentary Fig. 21) yielded that this Go-NoGo trace during outcome
processing did not change over the time course of the experiment,
suggesting that it did not reflect typical fatigue/ time-on task effects
often observed in the alpha band.

Again, we performed the reverse EEG-fMRI analysis using trial-by-
trial power in the identified lower alpha band cluster (Fig. 6B) as an
additional regressor in the quality-check fMRI GLM. Clusters of nega-
tive EEG-BOLD occurred correlation in a range of cortical regions,
including dACC and precuneus (Fig. 5E; Supplementary Table 7). In
sum, both dACC BOLD signal and midfrontal lower alpha band power
contained information about the previously performed response,
consistent with the idea that both signals reflect a “memory trace” of
the response to which credit is assigned once an outcome is obtained.

Striatal and vmPFC/PCC BOLD differentially relate to action
policy updating
EEG correlates of PCC BOLD and striatal BOLD occurred later than for
the dACC BOLD and overlapped with classical feedback-related mid-
frontal theta and beta power responses. We hypothesized that those
neural signals might be more closely related to the updating of action
policies (i.e., which action to perform for each cue) and predict the
next response to the same cue30,46.We thus used the trial-by-trial BOLD
responses in dACC, PCC/vmPFC, and striatum to predict whether
participants would repeat the same response on the next trial with the
same cue (“stay”) or switch to another response (“shift”). Mixed-effects
logistic regression yielded that dACC BOLD did not significantly pre-
dict response repetition (χ2(1) = 1.294, p = 0.255, b = −0.019, 95%-CI
[−0.050, 0.012], two-tailed; for all reported logistic regressionmodels,
assumptions of independence of residuals, low regressor collinearity,
and linearity of log odds in regressors were not violated). In contrast,
BOLD in PCC/vmPFC and striatum did predict response repetition,
though in opposite directions: Participants were significantly more
likely to repeat the same response when striatal BOLD was high

(χ2(1) = 9.051, p =0.003, b =0.067, 95%-CI [0.020, 0.114], two-tailed),
but more likely to switch to another response when vmPFC BOLD
(χ2(1) = 8.765, p = 0.003, b = −0.065, 95%-CI [−0.104, −0.026], two-
tailed) or PCC BOLD (χ2(1) = 3.691, p =0.030, b = −0.036, 95%-CI
[−0.067,−0.005], two-tailed; Fig. 5H)washigh (SupplementaryNote 19
with Supplementary Fig. 22). Similarly, high pgACC BOLD predicted a
higher likelihood of switching, likening it with the circuits formed by
vmPFC and PCC (χ2(1) = 15.559, p <0.001, b = −0.076, 95%-CI [−0.109,
−0.043], two-tailed).We also inspected the rawupsampledHRF shapes
per region per condition, confirming that differential relationships
were not driven by differences in HRF shapes across regions.

We also tested whether trial-by-trial midfrontal lower alpha band,
theta, or beta power (within the clusters identified in the EEG-only
analyses) predicted action policy updating. Participants were sig-
nificantly more likely to repeat the same response when beta power
was high (χ2(1) = 11.886, p <0.001, b = 0.145, 95%-CI [0.065, 0.225], two-
tailed), but more likely to switch when theta power was high
(χ2(1) = 4.179, p = 0.041, b = −0.099, 95%-CI [−0.191, −0.007], two-
tailed). Notably, unlike its BOLD correlate in ACC, lower alpha band
power did predict response repetition, with more repetition when
alpha power was high (χ2(1) = 10.711, p = 0.001, b =0.179, 95%-CI [0.077,
0.281], two-tailed; Supplementary Fig. 22).

In sum, high striatal BOLD and midfrontal beta power predicted
that the same response would be repeated on the next encounter of a
cue, while high vmPFC and PCC BOLD and high theta power predicted
that participants would switch to another response. Thus, although
both striatal and vmPFC/PCC BOLD positively encoded biased pre-
diction errors, these two sets of regions had opposite roles in learning:
while the striatum reinforced previous responses, vmPFC/PCC trig-
gered the shift to another response strategy (Fig. 5H).

Discussion
We investigated neural correlates of biased learning for Go and NoGo
responses. In line with previous research3,9, participants’ behavior was
best described by a computational model featuring faster learning
from rewardedGo responses and slower learning frompunishedNoGo
responses. Neural correlates of biased PEs were present in BOLD sig-
nals in several regions, including ACC, PCC, and striatum. These
regions exhibited distinct midfrontal EEG power correlates. Most
importantly, correlates of prefrontal cortical BOLD preceded corre-
lates of striatal BOLD: Trial-by-trial dACC BOLD correlated with lower
alpha band power immediately after outcome onset, followed by PCC
(and vmPFC) BOLD correlated with theta power, and finally, striatal
BOLD correlated with beta power. These results suggest that the
architecture of the asymmetric striatal pathwaysmight not be the only
neural structure that gives rise tomotivational learning biases; instead,
the PFC might critically contribute to these biases.

The observation that both PFC and striatal BOLD signal reflected
biased PEs might be explained by three different models. One model
assumes that both PFC and striatal processes arrive at biased learning
independently of each other, which is highly unlikely given strong
recurrent connections between both regions18,19,47. Another model
incorporates such interconnections, but assumes that striatum leads
the PFC. While such a model is in line with past animal studies48 and
modeling work49, it would predict EEG correlates of the PFC to trail
after EEG correlates of the striatum—or at least to occur with con-
siderable delay after outcome onset. This model is not supported by
our findings, which showed EEG correlates of PFC regions soon after
outcome onset, preceding striatal EEG correlates. These early EEG
correlates of PFC BOLD are in line with single cell recordings in PFC
which show responses confined to the first 500ms following outcome
onset50,51, corroborating that PFC outcome processing occurs before
the time of EEG correlates of striatal BOLD. The only model consistent
with our data assumes recurrent connections between PFC and stria-
tum, but with the PFC leading the striatum. Hence, these results are in
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line with a model of PFC biasing striatal outcome processing, giving
rise to motivational learning biases in behavior.

The dominant idea about the origin of motivational biases has
been that these biases are an emergent feature of the asymmetric
direct/ indirect pathway architecture in the basal ganglia2,19. We find
that these biases are present first in prefrontal cortical areas, notably
dACC and PCC, which argues against biases being purely driven by
subcortical circuits. Rather, motivational learning biases might be an
instance of sophisticated, even “model-based” learning processes in
the striatum instructed by the PFC52,53. An influence of PFC on striatal
RL has prominently been observed in the case of model-based vs.
model-free learning23,24 andhasbeen stipulated as amechanismof how
instructions can impact RL20,21. Although there are reports of striatal
processes preceding prefrontal processes within learning tasks48,54, the
opposite pattern of PFC preceding striatum has been observed as
well55 and a causal impact of PFC on striatal learning is well
established56,57. In particular, we have previously observed that moti-
vational biases in action selection might arise from early prefrontal
inputs to the striatum, as well17. Prefrontal influences on striatal pro-
cesses might thus be a common signature of both motivational
response and learning biases.

The particular subregion of PFC showing the earliest EEG corre-
lates was the dACC. This observation is in line with an earlier EEG-fMRI
study reporting dACC to be part of an early valuation system preced-
ing a later system comprising vmPFC and striatum58. The dACC has
been suggested to encode models of agents’ environment59,60 that are
relevant for interpreting outcomes, with BOLD in this region scaling
with the size of PEs25,26 and indexing howmuch should be learned from
newoutcomes.Wehypothesize that, at themomentofoutcome, dACC
maintains a “memory trace” of the previously performed response61

which might modulate the processing of outcomes as soon as they
become available62,63. Notably, dACC exhibited stronger BOLD signal
for Go than NoGo responses at the time of participants’ response, but
this pattern reversed at the time of outcomes. This reversal rules out
the possibility that response-locked BOLD signal simply spilled over
into the time of outcomes. Future research will be necessary to cor-
roborate such a motor “memory trace” in dACC. In sum, the dACC
might be in a designated position to inform subsequent outcome
processing in downstream regions bymodulating the learning rate as a
function of the previously performed response and the obtained
outcome. Rather than striatal circuits being sufficient for the emer-
gence of motivational biases, the more “flexible” PFC seems to play an
important role in instructing downstream striatal learning processes.

Striatal, dACC and PCC BOLD encoded biased PEs. In line with
previous research, striatal BOLD positively linked to midfrontal beta
power41,42, which positively encoded PE valence28,34,64, with correlations
extending into alpha power. PCC and vmPFC BOLD negatively linked
to midfrontal theta/delta power17,65,66, which encoded PE valence
negatively, but PE magnitude positively. Notably, theta/ delta power
correlates of vmPFC/PCC BOLD preceded beta power correlates of
striatal BOLD in time, which aligns with previous findings of motiva-
tional response biases being first visible in the vmPFC BOLD before
they impact striatal action selection17. Notably, EEG correlates of
striatal BOLD during outcome processing were in the beta band—in
contrast to previously observed correlates of striatal BOLD during
action selection in the theta band17. This dissociation suggests impor-
tant differences in the role of the striatum in these two processes. The
frequency-specific nature of these EEG-fMRI correlations further sug-
gests that they are signatures of task-induced events that are specific
to the trial phase and unlikely to reflect general anatomical con-
nectivity. In sum, while these EEG-fMRI findings on outcome proces-
sing resemble our previous EEG-fMRI findings on action selection in
that prefrontal signals precede striatal signals, they are dissociated in
terms of the frequency specificity, highlighting the distinct roles of the
striatum in these processes.

Positive encoding of prediction errors in striatal BOLD signal is a
well-established phenomenon38,67. Striatal BOLD was better described
by biased PEs than by standard PEs, corroborating the presence of
motivational learning biases also in striatal learning processes. Nota-
bly, EEG correlates of striatal BOLD peaked rather late, suggesting that
these processes are informed by early sources in PFC which are con-
nected to the striatum via recurrent feedback loops18,47. Positive pre-
diction errors increase the value of a performed action and thus
strengthen action policies. Hence, it is not surprising that high striatal
BOLD signal and midfrontal beta power predicted action
repetition68,69.

In contrast to striatal learning signals, the PCC and vmPFC BOLD
as well as midfrontal theta and delta power signals were more com-
plicated: Theta encodedPE valence, delta encodedPEmagnitude. Both
correlates showed opposite polarities. This observation is in line with
previous literature suggesting that midfrontal theta and delta power
might reflect the “saliency” or “surprise” aspect of PEs31,32,70. Surprises
have the potential to disrupt an ongoing action policy71 andmotivate a
shift to another policy, which might explain why these signals pre-
dicted switching to another response72,73. Notably, this EEG surprise
signal was only significantly correlated with the biased (but not the
standard) PE term, corroborating that the surprise attributed to out-
comes depends on the previously performed response in line with
motivational learning biases. In sum, both vmPFC and striatum encode
biased PEs, though with different consequences for future action
policies.

Taken together, distinct brain regions processed outcomes in a
biased fashion at distinct time points with distinct EEG power corre-
lates. Simultaneous EEG-fMRI recordings allowed us to infer when
those regions reached their peak activity74. However, the correlational
nature of BOLD-EEG links precludes strong statements about these
regions actually generating the respective power phenomena. Alter-
natively, activity in those regions might merely modulate the ampli-
tude of time-frequency responses originating from other sources.
Furthermore, while the observed associations align with previous
literature17,41,42,65,66, the considerable distance of the striatum to the
scalp raises the question whether scalp EEG could in principle reflect
striatal activity, at all75,76. Intracranial recordings have observed beta
oscillations during outcome processing in the striatum before69,77–79.
Also, our analysis controlled for BOLD signal in motor cortex, an
alternative candidate source for beta power, suggesting that late
midfrontal beta powerdidnotmerely reflectmotor cortex beta. Even if
the striatum is not the generator of the beta oscillations over the scalp,
their true (cortical) generator might be tightly coupled to the striatum
and thus act as a “transmitter” of striatal beta oscillations. In fact, the
analyses using trial-by-trial beta power to predict BOLD yielded sig-
nificant clusters in dlPFC and SMG, two candidate regions for such a
“transmitter”.

We observed EEG correlates of striatal BOLD at a rather late time
point after outcome onset. While we conclude that biased outcome
processing occurs much earlier in cortical regions than the striatum, it
is possible that the modulating influence of the striatum on cortical
sources of beta synchronization over the scalp (possibly dlPFC and
SMG, corroborating previous EEG-fMRI41–43 and source-reconstruction
findings44,45) takes time to surface. However, speaking against any
delay, some single studies have reported maximal correlations
between striatal LFPs and scalp EEG at a time lag of 080. Regardless,
even in the presence of a non-zero lag, our main conclusion would
hold: Biased learning is present in cortical regions early after outcome
onset, which cannot be a consequence of striatal input, but must
constitute an independent origin of motivational learning biases.

In order to make inferences about the relative order of PE pro-
cessing indifferent brain regions,wemust assume that the regressor in
our EEG-fMRI analysis approach—the trial-by-trial BOLD amplitude in
selected regions—mostly reflects the PE signal rather than learning-
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unrelated processes occurring in parallel. In support of this assump-
tion, animal recordings have indeed found that neural activity in ACC,
PCC, and striatum is dominated by reward processing during outcome
receipt81–85 and meta-analyses on human BOLD signal have found
strong effect sizes for PE processing in these regions38,67. Importantly,
we observe transient EEG-fMRI correlations that are likely event-
related rather than reflecting resting-state like correlations. We thus
favor the conclusion that the observed EEG-fMRI correlations reflect
differences in the timing of PE processing in these regions, although
we cannot fully exclude the possibility that parallel processes unre-
lated to (biased) learning contribute to these correlations. Note that,
while outcome processing in these regions is better described by
biased than by standard PEs, each region might encode PEs in an
idiosyncratic way (potentially reflecting noise in the value
representations86) and these residual idiosyncrasies drive the EEG-fMRI
correlations even when controlling for biased PEs predicted by the
winning computational model.

The correlational nature of the study prevents strong statements
over any causal interactions between the observed regions.We assume
here that a region showing an earlier midfrontal EEG correlate influ-
ences other regions showing later midfrontal EEG correlates, and such
an influence is plausible given findings of feedback loops between
prefrontal regions and the striatum47. Future studies targeting those
regions via selective causal manipulations will be necessary to test for
the causal role of PFC in informing striatal learning. Furthermore,while
parameter recovery formostparameters in thewinning computational
model (including the effective learning rates incorporating the learn-
ing bias) was excellent, parameter recovery for the learning bias term
itself was positive, but weaker (see Supplementary Note 6). Supple-
mentary models tested incorporating a perseveration parameter (see
Supplementary Note 8) yielded higher model recovery, but failed to
capture crucial aspects of the biased learning under investigation.
Future studies comprising larger samples of participants should
explore alternative implementations to reliably quantify individual
differences in these learning biases.

In conclusion, biased learning—increased credit assignment to
rewarded action, decreased credit assignment to punished inaction—
was visible both in behavior and in BOLD signal in a range of regions.
EEG correlates of prefrontal cortical regions, notably dACC and PCC,
preceded correlates of the striatum, consistent with amodel of the PFC
biasing RL in the striatum. The dACC appeared to hold a “motor
memory trace”of the past response, biasing early outcomeprocessing.
Subsequently, biased learning was also present in vmPFC/PCC and
striatum, with opposite roles in adjusting vs. maintaining action poli-
cies. These results refine previous views on the neural origin of these
learning biases, suggesting they might not only rely on subcortical
parts of the brain typically associated with rigid, habit-like responding,
but rather incorporate frontal inputs that are associated with coun-
terfactual reasoning and increased behavioral flexibility87,88. The PFC is
typically believed to facilitate goal-directed over instinctive processes.
Hence, PFC involvement into biased learning suggests that these bia-
ses are not necessarily agents’ inescapable “fate”, but rather likely act
as global “priors” that facilitate learning of more local relationships.
They allow for combining “the best of both worlds”—long-term
experience with consequences of actions and inactions together with
flexible learning from rewards and punishments.

Methods
Participants
Thirty-six participants (Mage= 23.6, SDage = 3.4, range 19–32; 25
women, 11 men, gender self-reported and not of relevance in our
analyses; all right-handed; all normal or corrected-to-normal vision)
tookpart in a single 3-h data collection session, forwhich they received
€30 flat fee plus a performance-dependent bonus (range €0–5,
Mbonus =€1.28, SDbonus = 1.54). The study was approved by the local

ethics committee (CMO2014/288; Commissie Mensengeboden
Onderzoek Arnhem-Nijmegen) and all participants provided written
informed consent. Exclusion criteria comprised claustrophobia,
allergy to gels used for EEG electrode application, hearing aids,
impaired vision, colorblindness, history of neurological or psychiatric
diseases (includingheavy concussions andbrain surgery), epilepsy and
metal parts in the body, or heart problems. Sample size was based on
previous EEG studies with a comparable paradigm9,89.

Behavioral and modeling results include all 36 participants. The
following participants were excluded from analyses of neural data: For
two participants, fMRI functional-to-standard image registration
failed; hence, all fMRI-only results are based on 34 participants
(Mage= 23.47, 25 women). Four participants exhibited excessive resi-
dual noise in their EEG data (>33% rejected trials) and were thus
excluded from all EEG analyses; hence, all EEG-only analyses are based
on 32 participants (Mage= 23.09, 23 women). For combined EEG-fMRI
analyses, we excluded the above-mentioned six participants plus one
more participant whose regression weights for every regressor were
about ten times larger than for other participants, leaving 29 partici-
pants (Mage = 23.00, 22women). Exclusionswere in linewith a previous
analysis of this data set17. fMRI- and EEG-only results held when ana-
lyzing only those 29 participants (see Supplementary Notes 1–5 with
Supplementary Figs. 1–4).

Task
Participants performed a motivational Go/ NoGo learning task3,9

administered via MATLAB 2014b (MathWorks, Natick, MA, United
States) and Psychtoolbox-3.0.13. On each trial, participants saw a gem-
shaped cue for 1300mswhich signaled whether they could potentially
win a reward (Win cues) or avoid a punishment (Avoid cues) and
whether they had to perform a Go (Go cue) or NoGo response (NoGo
cue). They could press a left (GoLEFT), right (GoRIGHT), or no (NoGo)
button while the cue was presented. Only one response option was
correct per cue. Participants had to learn both cue valence and
required action from trial-and-error. After a variable inter-stimulus-
interval of 1400–1600ms, the outcome was presented for 750ms.
Potential outcomes were a reward (symbolized by coins falling into a
can) or neutral outcome (can without money) for Win cues, and a
neutral outcome or punishment (symbolized bymoney falling out of a
can) for Avoid cues. Feedback validity was 80%, i.e., correct responses
were followed by positive outcomes (rewards/ no punishments) on
only 80% of trials, while incorrect responses were still followed by
positive outcomes on 20% of trials. Trials ended with a jittered inter-
trial interval of 1250–2000 ms, yielding total trial lengths of
4700–6650ms.

Participants gave left and right Go responses via twobutton boxes
positioned lateral to their body. Each box featured four buttons, but
only one button per box was required in this task. When participants
accidentally pressed a non-instructed button, they received the mes-
sage “Please press one of the correct keys” instead of an outcome. In
the analyses, these responses were recoded into the instructed button
on the respective button box. In the fMRI GLMs, such trials were
modeled with a separate regressor.

Before the task, participants were instructed that each cue could
be followed by either reward or punishment, that each cue had one
optimal response, that feedback was probabilistic, and that the
rewards andpunishmentswere converted into amonetary bonus upon
completion of the study. Theyperformed an elaborate practice session
in which they got familiarized first with each condition separately
(using practice stimuli) and finally practiced all conditions together.
They then performed 640 trials of the main task, separated into two
sessions of 320 trials with separate cue sets. Introducing a new set of
cues allowed us to prevent ceiling effects in performance and inves-
tigate continuous learning throughout the task. Each session featured
eight cues that were presented 40 times. After every 100–110 trials
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(~6min), participants could take a self-paced break. The assignment of
the gems to cue conditions was counterbalanced across participants,
and trial order was pseudo-random (preventing that the same cue
occurred on more than two consecutive trials).

Behavior analyses
We used mixed-effects logistic regression (as implemented in the
package lme4 version 1.1.26 in R version 3.3.2) to analyze behavioral
responses (Go vs. NoGo) as a function of required action (Go/ NoGo),
cue valence (Win/ Avoid), and their interaction. We included a random
intercept and all possible random slopes and correlations per partici-
pant to achieve a maximal random-effects structure90. Sum-to-zero
coding was employed for the factors. Type 3 p-values were based on
likelihood ratio tests (implemented in the R package afex version
0.28.1). We used a significance criterion of α =0.05 for all the analyses.

Furthermore, we usedmixed-effects logistic regression to analyze
“stay behavior”, i.e., whether participants repeated an action on the
next encounter of the same cue, as a function of outcome valence
(positive: reward or no punishment/negative: no reward or punish-
ment), outcome salience (salient: reward or punishment/neutral: no
reward or no punishment), and performed action (Go/NoGo). We
again included all possible random intercepts, slopes, and
correlations.

Computational modeling
We fit a series of increasingly complex RL models to participants’
choices to decide between different algorithmic explanations for the
emergence of motivational biases in behavior. We employed the same
set of nested models as in previous studies using this task3,9. For tests
of alternative biases specifications, see Supplementary Notes 7–9 with
Supplementary Figs. 6–8.

To determine whether a Pavlovian response bias, a learning bias,
or both biases jointly predicted behavior best, we fitted a series of
increasing complex computational models. In each trial (t), choice
probabilities for all three response options (a) given the displayed cue
(s)were computed from their actionweights (modifiedQ-values) using
a softmax function:

p ðat jstÞ=
expðwðat , stÞÞP
a expðwða0, stÞÞ

ð1Þ

After each response, action values were updated with the pre-
diction error based on the obtained outcome r 2 f�1;0; 1g.As the
starting model (M1), we fitted an standard delta-learning model91 in
which action values were updated with prediction errors, i.e., the
deviation between the experienced outcome and expected outcome.
Thismodel contained two free parameters: the learning rate (ε) scaling
the updating term and the feedback sensitivity (ρ) scaling the received
outcome (i.e., higher feedback sensitivity led to choices more strongly
guided by value difference, akin to the role of the inverse temperature
parameter frequency used in RL models):

Qt at , st
� �

=Qt�1 at , st
� �

+ εðρr � Qt�1 at , st
� �Þ ð2Þ

In thismodel, choiceprobabilitieswere fully determinedbyaction
values, without any bias. We initialized action values Q0 such that they
reflected a “neutral” expected value for each action. Win cues could
lead to reward (+1) or neutral (0) outcomes and Avoid cues to neutral
(0) or punishment (−1) outcomes. A neutral expected value would
assign equal probability to either possible outcome, leading to
expectations of +1/2 and −1/2, respectively. In addition, because par-
ticipants’ feedback sensitivity parameter ρ reflected how participants
weighed the outcomes they received, also the initial values had to be
multiplied with the feedback sensitivity to stay neutral between 0 and
participants’ re-weighted positive/ negative outcome of +/−1*ρ. Thus,

initial action values Q0 were set to 1/2*ρ (Win cues) and −1/2*ρ
(Avoid cues).

Unlike previous versions of the task3, cue valences were not
instructed, but had to be learned from outcomes, as well9. Thus, until
experiencing the first non-neutral outcome (reward or punishment)
for a cue, participants could not know its valence and thus not learn
from neutral feedback. Hence, for these early trials, action values were
multiplied with zero when computing choice probabilities9. After the
first encounter of a valenced outcome, action values were “unmuted”
and started to influence choices probabilities, retrospectively con-
sidering all previous outcomes9.

In M2, we added the Go bias parameter b, which accounted for
individual differences in participants’ overall propensity to make Go
responses, to the action values Q, resulting in action weights w-

wðat , stÞ=
Qt at , st

� �
+b if a=Go

Qt at , st
� �

else

(

ð3Þ

InM3,we added a Pavlovian responsebiasπ, scaling howpositive/
negative cue valence (Pavlovian values) increased/ decreased the
weights of Go responses:

wðat , stÞ=
Qt at , st

� �
+ b+πV ðsÞ if a=Go

Qt at , st
� �

else

(

ð4Þ

Participants were instructed that a cue was either a Win cue
(affording rewards or neutral outcomes) or an Avoid cue (affording
neutral outcomes or punishments). Hence, cue valence (Win/ Avoid)
did not have to be learned instrumentally; instead, it could be inferred
as soon participants experienced a non-neutral outcome. Until that
moment, cue valence V ðsÞ was set to zero. Afterwards, V ðsÞ was set to
+0.5 forWin cues and −0.5 for Avoid cues.Note that choosing different
values than0.5wouldmerely rescale thebias parameterπ (e.g., halving
π with cue valences of +1 and −1) without any changes in the model’s
predictions. The Pavlovian response bias affected left-hand and right-
hand Go responses similarly and thus reflected generalized activation/
inactivation by the cue valence.

In M4, we added a learning bias κ, increasing the learning rate for
rewards after Go responses and decreasing it for punishments after
NoGo responses. The learning bias was specific to the response shown,
thus reflecting a specific enhancement in action learning/ impairment
in unlearning for that particular response. Conceptually, learning rates
differed between response-outcome conditions in the following way:

ε=

ε0 + κ if rt = 1and a= go

ε0 � κ if rt = � 1and a=nogo

ε0 else

8
><

>:
ð5Þ

In the technical implementation of thismodel, learning rates were
sampled in continuous space and then inverse-logit transformed to
constrain them to the range [0 1]3,9. However, after this transformation,
the impact of adding vs. subtracting the learning bias κ would no
longer be symmetric. Hence, for baseline learning rates ε0 < 0.5, we
first computed the difference between the baseline learning rate and
the learning rates for punished NoGo responses and used this differ-
ence to compute the learning rate for rewarded Go responses:

ε=

ε0 = inv:logit εð Þ
εpunished NoGo = inv:logit ε� κð Þ if ε0 <0:5

εrewarded Go = ε0 + ε0 � εpunished NoGo

� �
if ε0 <0:5

8
>><

>>:
ð6Þ

Notably, this procedure is only guaranteed to work when ε0 < 0.5.
For ε0 > 0.5, the difference term could become >0.5 and the learning
rate for rewardedGo responseswouldbecome>1, which is impractical.
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Hence, for ε0 > 0.5, we first computed the learning rate for rewarded
Go responses and used the difference to the baseline learning rate ε0
to compute the learning rate for punished NoGo responses:

ε=

ε0 = inv:logit εð Þ
εrewarded Go = inv:logit ε+ κð Þ if ε0 >0:5

εpunished NoGo = ε0 � εrewarded Go � ε0
� �

if ε0 >0:5

8
><

>:
ð7Þ

In the model M5, we included both the Pavlovian response bias
and the learning bias.

The weakly informative hyperpriors were set to Xρ ∼Nð2, 3Þ,
X ε ∼Nð0, 2Þ, Xb,π, κ ∼Nð0, 3Þ, in line with previous implementations
of this model3,9. The same priors (for the same parameters) were used
across different model implementations to not bias model compar-
ison. Alternative hyperpriors did not change the results. For comput-
ing the participant-level parameters, ρwas exponentiated to constrain
it to positive values, and the inverse-logit transformation was
applied to ε.

For model fitting and comparison, we used hierarchical Bayesian
inference as implemented in the CBM toolbox in MATLAB92. This
approach combines hierarchical Bayesian parameter estimation with
random-effects model comparison93. The fitting procedure involves
two steps, starting with the Laplace approximation of the model evi-
dence to compute the group evidence, which quantifies howwell each
model fits the datawhile penalizing formodel complexity. Both group-
level and individual-level parameters are estimated using an iterative
algorithm. We used wide Gaussian priors (see hyperpriors above) and
exponential and sigmoid transforms to constrain parameter spaces.
Subsequent random-effects model selection allows for the possibility
that different models generated the data for different participants.
Participants contribute to the group-level parameter estimation in
proportion to how well a given model fits their data, quantified via a
responsibility measure (i.e., the probability that the model at hand is
responsible for generating data of the respective participant). This
model-comparison approach has been shown to be less susceptible to
the influence of outliers92. We selected the “winning” model based on
the protected exceedance probability.

We assured that the winning model was able to reproduce the
data, using the sampled combinations of participant-level parameter
estimates to create 3600 agents that “played” the task. We employed
two approaches to simulate the task: posterior predictive model simu-
lations and one-step-ahead model predictions. In the posterior pre-
dictive model simulations, agents’ choices were sampled
probabilistically based on their action values, and outcomes prob-
abilistically sampled based on their choices. This method ignores
participant-specific choice histories and can thus yield choice/ out-
come sequences that diverge considerably from participants’ actual
experiences. In contrast, one-step-ahead predictions use participants’
actual choices andexperiencedoutcomes ineach trial to update action
values.We simulated choices for eachparticipant using bothmethods,
which confirmed that the winning model M5 (“asymmetric pathways
model”) was able to qualitatively reproduce the data, while an alter-
native implementation of biased learning (“action priming model”)
failed to do so (see Supplementary Note 7 with Supplementary Fig. 6).

fMRI data acquisition
fMRI data were collected on a 3T Siemens Magnetom Prisma fit MRI
scanner with a 64-channel head coil. During scanning, participants’
heads were restricted using foam pillows and strips of adhesive tape
were applied to participants’ forehead to provide active motion feed-
back and minimize head movement94. After two localizer scans to
position slices, we collected functional scans with a whole-brain T2*-
weighted sequence (68 axial-oblique slices, TR = 1400ms, TE= 32ms,
voxel size 2.0mm isotropic, interslice gap 0mm, interleaved multi-
band slice acquisition with acceleration factor 4, FOV 210mm, flip

angle 75°, A/P phase encoding direction). The first seven volumes of
each run were automatically discarded. This sequence was chosen
because of its balance between a short TR and relatively high spatial
resolution, which was required to disentangle cue and outcome-
related neural activity. Pilots using different sequences yielded that
this sequence performed best in reducing signal loss in striatum.

Furthermore, after task completion, we removed the EEG cap and
collected a high-resolution anatomical image using a T1-weighted MP-
RAGE sequence (192 sagittal slices per slab, GRAPPA acceleration fac-
tor = 2, TI = 1100ms, TR = 2300ms, TE = 3.03ms, FOV 256mm, voxel
size 1.0mm isotropic, flip angle 8°) which was used to aid image
registration, and a gradient fieldmap (GRE; TR = 614ms, TE1 = 4.92ms,
voxel size 2.4mm isotropic, flip angle 60°) for distortion correction.
For one participant, no fieldmapwas collected due to time constraints.
At the endof each session, anadditionalDTI data collection tookplace;
results will be reported elsewhere.

fMRI preprocessing
All fMRI pre-processing was performed in FSL 6.0.0. After cleaning
images from non-brain tissue (brain-extraction with BET), we per-
formed motion correction (MC-FLIRT), spatial smoothing (FWHM
3mm), and usedfieldmaps for B0unwarping anddistortion correction
in orbitofrontal areas. We used ICA-AROMA95 to automatically detect
and reject independent components associated with head motion.
Finally, images were high-pass filtered at 100 s and pre-whitened. After
the first-level GLM analyses, we computed and applied co-registration
of EPI images to high-resolution images (linearly with FLIRT using
boundary-based registration) and to MNI152 2mm isotropic standard
space (non-linearly with FNIRT using 12 DOF and 10mm warp
resolution).

ROI selection
For fMRI-informed EEG analyses, we first created a functional mask as
the conjunction of the PESTD and PEDIF contrasts by thresholding both
z-maps at z > 3.1, binarizing, andmultiplying them (see Supplementary
Note 10 with Supplementary Figs. 9 and 10). After visual inspection of
the respective clusters, we created seven anatomical masks based on
the probabilistic Harvard-OxfordAtlas (included in FSL; thresholded at
10%): striatum and ACC (see above), vmPFC (combined frontal pole,
frontal medial cortex, and paracingulate gyrus), motor cortex (com-
bined precentral and postcentral gyrus), PCC (Cingulate Gyrus, pos-
terior division), ITG (Inferior Temporal Gyrus, posterior division, and
Inferior Temporal Gyrus, temporooccipital part) and primary visual
cortex (Lingual Gyrus, Occipital Fusiform Gyrus, Occipital Pole). We
thenmultiplied this functionalmaskwith each of the seven anatomical
masks, returning seven masks focused on the respective significant
clusters, which were then used for signal extraction. For the dACC
mask, we manually excluded voxels in pgACC belonging to a distinct
cluster. Masks were back-transformed to each participant’s
native space.

For bar plots in Fig. 3A, we multiplied the anatomical masks of
vmPFC and striatum specified above with the binarized outcome
valence contrast.

fMRI analyses
For each participant, data were modeled using two event-related
GLMs. First, we performed a model-based GLM in which we used trial-
by-trial estimates of biased PEs as regressors. Second, we used another
model-free GLM in which we modeled all possible action x outcome
combinations via outcome-locked categorical regressors while at the
same time modeling response-locked left- and right-hand response
regressors. This model free GLM also contained the outcome valence
contrast reported as an initial manipulation check.

In the model-based GLM, we used two model-based regressors
that reflected the trial-by-trial prediction error (PE) update term. The
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update term was computed by multiplying the prediction-error with
the condition-specific learning rate. As described above, in thewinning
model M5, the learning bias term κ leads to altered learning from
“congruent” action-outcome pairs, with faster learning of Go actions
followed by rewards, but slower unlearning of NoGo actions followed
by punishments. To compute trial-by-trial updates, we extracted the
group-level parameters of the best fitting computational model M5
(asymmetric pathwaysmodel) and used those parameters to compute
the prediction error on every trial for every participant. Using the same
parameter for each participant is warranted when testing for the same
qualitative learning pattern across participants96. Given that both
standard (base model M1) and biased (winning model M5) PEs were
highly correlated (mean correlation of 0.921 across participants, range
0.884–0.952), it appeared difficult to distinguish standard learning
from biased learning. As a remedy, we decomposed the biased PE into
the standard PE plus a difference term as PEBIAS =PESTD +PEDIF

22,36.
Any region displaying truly biased learning should significantly encode
both the standard PE term and the difference term. The standard PE
and difference term were much less correlated (mean correlation of
−0.020, range −0.326–0.237). To control for cue-related activation, we
furthermore added four regressors spanned by crossing cue valence
and performed action (Go response to Win cue, Go response to Avoid
cue, NoGo response to Win cue, NoGo response to Avoid cue).

The model-free GLM included a separate regressor for each of the
eight conditions obtained when crossing performed action (Go/NoGo)
and obtained outcome (reward/no reward/no punishment/punish-
ment). We fitted four contrasts: (1) one contrast comparing conditions
with positive (reward/no punishment) and negative (no reward/pun-
ishment) outcomes, used as a quality check to identify regions that
encoded outcome valence; (2) one contrast comparing Go vs. NoGo
responses at the time of the outcome; (3) one contrast summing of left-
and right-hand responses, reflecting Go vs. NoGo responses at the time
of the response; and (4) one contrast subtracting right- from left-handed
responses, reflecting lateralized motor activation. As this GLM resulted
in empty regressors for several participants when fitted on a block level,
making it impossible to use the data of the respective blocks on a higher
level, we instead concatenated blocks and performed a single GLM per
participant. We therefore registered the data from all blocks to the
middle image of the first block (default reference volume in FSL) using
MCFLIRT. The first and last 20 s of each block did not feature any task-
related events, such that carry-over effects of task events in the design
matrix from one block to another were not possible.

In both GLMs, we added four regressors of no interest: one for the
motor response (left = +1, right = −1, NoGo =0), one for error trials, one
for outcomeonset, and one for trials with invalidmotor response (and
no outcome respectively). We also added nine or more nuisance
regressors: the six realignment parameters from motion correction,
mean cerebrospinal fluid (CSF) signal, mean out-of-brain (OBO) signal,
and a separate spike regressor for each volume with a relative dis-
placement of more than 2mm (occurred in 10 participants; in those
participants: M = 7.40, range 1–29). For the model-free GLM, nuisance
regressors were added separately for each block as well as an overall
intercept per block.We convolved task regressorswith double-gamma
haemodynamic response function (HRF) and high-pass filtered the
design matrix at 100 s.

First-level contrasts were fit in native space. Afterwards, co-
registration and reslicing was applied to participants’ contrast maps,
which were then combined on a (participant and) group level using
FSL’s mixed effects models tool FLAME with a cluster-forming
threshold of z > 3.1 and cluster-level error control at α <0.05 (i.e.,
two one-sided tests with α <0.025).

EEG data acquisition
We recorded EEG data with 64 channels (BrainCap-MR-3-0 64Ch-
Standard; Easycap GmbH; Herrsching, Germany; international 10–20

layout, reference electrode at FCz) plus channels for electro-
cardiogram, heart rate, and respiration (used for MR artifact correc-
tion) at a sampling rate of 1000Hz. We placed MRI-compatible EEG
amplifiers (BrainAmp MR plus; Brain Products GmbH, Gilching, Ger-
many) behind the MR scanner and attached cables to the participants
once they were located in final position in the scanner. Furthermore,
we fixated cables using sand-filled pillows to reduce artifacts induced
through cable movement in the magnetic field. During functional
scans, the MR helium pump was switched off to reduce EEG artifacts.
After the scanning, we recorded the exact EEG electrode locations on
participants’ heads relative to three fiducial points using a Polhemus
FASTRAKdevice. For four participants, no suchdatawere available due
to timeconstraints/ technical errors, inwhich caseweused the average
electrode locations of the remaining 32 participants.

EEG pre-processing
First, raw EEG data were cleaned from MR scanner and cardioballistic
artifacts using BrainVisionAnalyzer97. The rest of the pre-processing
was performed in Fieldtrip in MATLAB 2018b98. After rejecting chan-
nels with high residual MR noise (mean 4.8 channels per participant,
range 1–13), we epoched trials into time windows of −1400–2000ms
relative to the onset of outcomes. Timing of this epochs was deter-
mined by the minimal inter-stimulus interval beforehand until the
minimal inter-trial interval afterwards. Data was re-referenced to the
grand average, which allowed us to recover the reference as channel
FCz, and then band-pass filtered using a two-pass 4th order Butter-
worth IIR filter (Fieldtrip default) in the range of 0.5–35Hz. These filter
settings allowed us to distinguish the delta, theta, alpha, and beta
band, while filtering out residual high-frequency MR noise. This low-
pass filter cut-off was different from a previous analysis of this data in
which we set it at 15Hz17 because, in this analysis, we had a hypothesis
onoutcome valence encoding in thebeta range.We then applied linear
baseline correction based on the 200ms prior to cue onset and used
ICA to detect and reject independent components related to eye-
blinks, saccades, head motion, and residual MR artifacts (mean num-
ber of rejected components per participant: 32.694, range 24–45).
Afterwards, wemanually rejected trials with residual motion (for all 36
participants: M = 117.722, range 11–499). Based on trial rejection, four
participants for whichmore than 211 (33%) of trials were rejected were
excluded from any further analyses (rejected trials after excluding
those participants: M = 81.875, range 11–194). Finally, we computed a
Laplacian filter with the spherical spline method to remove global
noise (using the exact electrode positions recorded with Polhemus
FASTRAK), which we also used to interpolate previously rejected
channels. This filter attenuates more global signals (e.g., signal from
deep sources or global noise) and noise (heart-beat and muscle arti-
facts) while accentuating more local effects (e.g., superficial sources).

EEG TF decomposition
We decomposed the trial-by-trial EEG time series into their time-
frequency representations using 33 Hanning tapers between 1 and
33Hz in steps of 1 Hz, every 25ms from −1000 until 1300ms relative to
outcome onset. We first zero-padded trials to a length of 8 s and then
performed time-frequency decomposition in steps of 1 Hz by multi-
plying the Fourier transform of the trial with the Fourier transform of a
Hanning taper of 400ms width, centered around the time point of
interest. This procedure results in an effective resolution of 2.5 Hz
(Rayleigh frequency), interpolated in 1 Hz steps, which was more
robust to the choice of exact frequency bins. To exclude the possibility
of slow drifts in power over the time course of the experiment, we
performedbaseline correction acrossparticipants and trialsbyfitting a
linear model for each channel/ frequency combination with trial
number as predictor and the average power 250–50ms before out-
come onset as outcome, and subtracting the power predicted by this
model from the data. This procedure is able to remove slow linear
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drifts in power over time from the data. In absence of such drifts, it is
equivalent to correcting all trials by the grand mean across trials per
frequency in the selected baseline time window. Afterwards, we aver-
aged power over trials within each condition spanned by performed
action (Go/NoGo) and outcome (reward/no reward/no punishment/
punishment). We finally converted the average time-frequency data
per condition to decibel to ensure that data across frequencies, time
points, electrodes, and participants were on same scale.

EEG analyses
All analyses were performed on the average signal of a-priori selected
channels Fz, FCz, and Cz based on previous literature9,17. We again
performed model-free and model-based analyses. For the model-free
analyses, we sorted trials based on the performed action (Go/NoGo)
and obtained outcome (reward/no reward/no punishment/punish-
ment) and computed the mean TF power across trials for each of the
resultant eight conditions for each participant. We tested whether
theta power (average power 4–8Hz) and beta power (average power
13–30Hz) encoded outcome valence by contrasting positive (reward/
no punishment) and negative (no reward/punishment) conditions
(irrespective of the performed action). We also tested for differences
between Go and NoGo responses in the lower alpha band (6–10Hz).
For all contrasts, we employed two-sided cluster-based permutation
tests in a window from 0 to 1000ms relative to outcome onset. For
beta power, results were driven by a cluster that was at the edge of
1000ms; to more accurately report the time span during which this
cluster exceeded the threshold, we extended the time window to
1300ms in this particular analysis. Such tests are able to reject the null
hypothesis of exchangeability of two experimental conditions, but
they arenot suited toprecisely locate clusters in time-frequency space.
Hence, interpretations were mostly based on the visual inspection of
plots of the signal time courses.

For model-based analyses, similar to fMRI analyses, we used the
group-level parameters from the best fitting computational model M5
to compute the trial-by-trial biased PE term and decomposed it into
the standardPE termand the difference to the biased PE term.Weused
both terms as predictors in a multiple linear regression for each
channel-time-frequency bin for each participant, and then performed
one-sample cluster-based permutation-tests across the resultant b-
maps of all participants99. For further details on this procedure, see
fMRI-informed EEG analyses.

fMRI-informed EEG analyses
The BOLD signal is sluggish. It is thus hard to determinewhendifferent
brain regions become active. In contrast, EEG provides much higher
temporal resolution. A fruitful approach can be to identify distinct EEG
correlates of the BOLD signal in different regions, allowing to test
hypotheses about the temporal order in which regions might become
active and modulated EEG power17,74. Furthermore, by using the BOLD
signal from different regions in a multiple linear regression, one can
control for variance shared among regions (e.g., changes in global
signal; variance due to task regressors) and test which region is the
best unique predictor of a certain EEG signal. In such an analysis, any
correlation between EEG and BOLD signal from a certain region
reflects an association above and beyond those induced by task
conditions.

We used the trial-by-trial BOLD signal in selected regions in a
multiple linear regression to predict EEG signal over the scalp17,74

(building on existing code from https://github.com/tuhauser/TAfT;
see Supplementary Note 15 with Supplementary Fig. 17 for a graphical
illustration). As a first step, we extracted the volume-by-volume signal
(first eigenvariate) from each of the seven regions identified to encode
biased PEs (conjunction of PESTD and PEDIF: striatum, dACC, pgACC,
leftmotor cortex, PCC, left ITG, and primary visual cortex).We applied
a highpass-filter at 128 s and regressed out nuisance regressors (6

realignment parameters, CSF, OOB, single volumes with strong
motion, same as in the fMRI GLM). We then upsampled the signal by a
factor 10, epoched it into trials of 8 s duration, and fitted a separate
HRF (based on the SPM template) to each trial (58 upsampled data
points), resulting in trial-by-trial regression weights reflecting the
respective BOLD response. We then combined the regression weights
of all trials and regions of a certain participant into a designmatrixwith
trials as rows and the seven ROIs as columns, which we then used to
predict power at each time-frequency-channel bin. As further control
variables, we added the behavioral PESTD and PEDIF regressors to the
designmatrix. All results were identical with and without the inclusion
of PEs as covariates in the regression, suggesting that EEG-fMRI cor-
relations did not merely arise from both modalities encoded PEs as a
“common cause” that induced correlations. Instead, these correlations
reflected the incremental variance explained in EEG power that was
afforded by the BOLD signal even beyond the PEs. All predictors and
outcomeswere demeaned such that the intercept becamezero. Such a
multiple linear regression was performed for each participant, result-
ing in a time-frequency-channel-ROI b-map reflecting the association
between trial-by-trial BOLD signal and TF power at each time-
frequency-channel bin. B-maps were Fisher-z transformed, which
makes the sampling distribution of correlation coefficients approxi-
mately normal and allows for combining them across participants.
Finally, we tested for fMRI-EEG associations with a cluster-based one-
sample permutation t-test99 on the mean regression weights over
channels Fz, FCz, and Cz across participants in the range of
0–1000ms, 1–33Hz. We first obtained a null distribution of maximal
cluster mass statistics from 10000 permutations. For each permuta-
tion, we flipped the sign of the b-map of a random subset of partici-
pants, computed a separate t-test at each time-frequency bin (bins of
25ms, 1 Hz) across participants (results in t-map), thresholded these
maps at |t | > 2, and finally computed themaximal clustermask statistic
(sum of all t-values) for any cluster (adjacent voxels above threshold).
Afterwards, we computed the same t-map for the real data, identified
the cluster with the biggest cluster-mass statistic, and computed the
corresponding p-value as number of permutations in the null dis-
tribution that were larger than themaximal clustermass statistic in the
real data.

EEG-informed fMRI analyses
For the EEG-informed fMRI analyses, we fit three additional GLMs for
which we entered the trial-by-trial theta/delta power (1–8Hz), beta
power (13–30Hz), and lower alpha band power (6–10Hz) as para-
metric regressors on top of the task regressors of themodel-free GLM.
These measures were created by using the 3-D (time-frequency-chan-
nel) t-map obtained when contrasting positive vs. negative outcomes
(theta/ delta and beta; Fig. 4A, B) and Go vs. NoGo conditions (lower
alpha band) as a linear filter (Fig. 4; see Supplementary Note 15 with
Supplementary Fig. 18 for a graphical illustration of this approach).
Note that these signalswere selectedbasedon the EEG-only results and
not informed by the fMRI-informed EEG analyses. We enforced strict
frequency cut-offs. For lower alpha band and beta, we usedmidfrontal
channels (Fz/FCz/Cz). For theta/ delta power, given the topography
that reached far beyond midfrontal channels and over the entire
frontal scalp, we used a much wider ROI (AF3/ AF4/ AF7/ AF8/ F1/ F2/
F3/ F4/ F5/F6/F7/F8/FC1/FC2/FC3/FC4/FC5/FC6/FCz/Fp1/Fp2/Fpz/Fz).
We extracted those maps and retained all voxels with t > 2. These
masks were applied to the trial-by-trial time-frequency data to create
weighted summary measures of the average power in the identified
clusters in each trial. For trials for which EEG data was rejected, we
imputed the participant mean value of the respective action (Go/
NoGo) x outcome (reward/no reward/no punishment/punishment)
condition. Note that this approach accentuates differences between
conditions, which were already captured by the task regressors in the
GLM, but decreases trial-by-trial variability within each condition,
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which is of interest in this analysis. This imputation approach is thus
conservative. While trial-by-trial beta and theta power were largely
uncorrelated, mean r =0.104, range −0.118–0.283 across participants,
and sowerebeta and alpha,mean r =0.097, range−0.162–0.284 across
participants, theta and alpha powerweremoderately correlated,mean
r =0.412, range 0.121–0.836 across participants, warranting the use of
a separate channel ROI for theta and using separate GLMs for each
frequency band.

Analyses of behavior as a functionofBOLD signal andEEGpower
We used mixed-effects logistic regression to analyze “stay behavior”,
i.e., whether participants repeated an action on the next encounter of
the same cue, as a function of BOLD signal and EEG power in selected
regions. For analyses featuring BOLD signal, we used the trial-by-trial
HRF amplitude also used for fMRI-informed EEG analyses. For analyses
featuring EEG,weused the trial-by-trial EEGpower alsoused in the EEG-
informed fMRI analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This is a re-analysis of previously published data17. This raw data has
previously been published on the Radboud Data Repository under:
https://doi.org/10.34973/pezs-pw62. Preprocessed data and fMRI
results presented in this paper have been deposited on the Radboud
Data Repository under: https://doi.org/10.34973/peg8-xy67. In line
with requirements of the Ethics Committee and the Radboud Uni-
versity security officer, potentially identifying data (such as imaging
data) can only be shared to identifiable researchers. Hence, research-
ers requesting access to these repositories have to register and accept
a data user agreement; access will then automatically be granted via a
“click-through” procedure (without involvement of authors or data
stewards). Group-level unthresholded fMRI z-maps are available on
Neurovault (https://neurovault.org/collections/11184/). Source data
are provided with this paper.

Code availability
All code required to achieve the reported results is available under:
https://doi.org/10.34973/peg8-xy67. Code will be maintained under
https://github.com/johalgermissen/Algermissen2024NatComms, with
a permanent copy at the timeof publication under https://github.com/
denoudenlab/Algermissen2024NatComms and on Zenodo (https://
doi.org/10.5281/zenodo.10352241)100.
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