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Jennifer C. Swart

DONDERS
S E R I E S

To go or not to go?
On motivational biases in decision-making

Chapter 1
General introduction

I am just a child who has never grown up. I still keep asking these ‘how’ and ‘why’ questions. 

Occasionally, I find an answer.

- Stephen Hawking

Partly published as:

Van Driel J*, Swart JC*, Egner T, Ridderinkhof KR, & Cohen MX (2015). (No) time for control: 

Frontal theta dynamics reveal the cost of temporally guided conflict anticipation. Cognitive, 

Affective, and Behavioral Neuroscience, 15:787-807. *Shared first authorship.
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Motivation

Motivation is a hallmark of human cognition and strongly drives our behaviour. Some days we 

are highly motivated and achieve a lot (such as going to work, the gym, finishing household 

chores, ánd socializing with friends), whereas we seem to lack that motivation at other days 

and don’t achieve much more than watching Netflix. In many cases motivation is beneficial 

for the realization of our desired goals, as it generally facilitates the behaviour that is required 

for achieving those goals. We often take these motivational drives for granted, but these 

drives actually depend on a delicate interplay of neural mechanisms that can go awry as well; 

motivation can drive our actions too much, as for example in addiction and impulsivity, or drive 

our actions too little, as for example in apathy and depression. The occurrence of motivational 

disorders has increased in modern society and is predicted to further increase during this 

century (www.volksgezondheidenzorg.info). These developments urge the field of cognitive 

neuroscience to address how our motivations drive our actions on the one hand, and address 

how we can overcome dysfunctional motivational drives on the other hand. In this thesis, 

I set out to address these questions and shed light on the neurocomputational mechanisms 

involved in driving vs. regulating motivated action. In the remainder of this chapter, I first focus 

on motivational control over actions and the associated neural underpinnings, and secondly 

focus on the neural mechanisms that allow us to reduce the impact of motivational drives when 

these drives become dysfunctional.

Motivational biasing of action

Day in, day out, we pursue a vast number of goals. These goals can be relatively short-term, such 

as obtaining a delicious piece of pie, or relatively long-term, such as completing this PhD thesis. 

When pursuing our goals, we generally try to act in a manner that leads to desirable outcomes, 

whereas we try to avoid acting in ways that lead to unwanted outcomes. These motivational 

drives have long been known to guide our actions accordingly; Anticipated rewards tend to 

facilitate taking action (Cools et al., 2011; Duffy, 1962; Estes, 1943; Estes and Skinner, 1941; 

Guitart-Masip et al., 2012), whereas anticipated punishments tend to facilitate holding back 

(Davis and Wright, 1979; Geurts et al., 2013; Huys et al., 2011). In other words, the anticipation of 

positive/rewarding and negative/punishing outcomes has an opposing effect on the activation 

of our behaviour, which we refer to as a motivational bias (in action) throughout this thesis 

(Figure 1). Remarkably, this motivational biasing of our behaviour even occurs while we have 

the feeling of being completely in control of our behaviour.



11

GENERAL INTRODUCTION

1
Chapter

Figure 1. Motivational biasing of action.
The anticipated motivational valence (reward vs. punishment) strongly guides the activation of our 
behaviour (action vs. inaction), making it easy for example to approach and grab tasty looking food and 
to stay away from rotten food. These situations are indicated in colour above, and throughout this thesis 
I refer to these situations as ‘motivationally congruent’. The coupling of action to reward and inaction to 
punishment is beneficial in many cases, yet for some situations it is more beneficial to do the opposite, 
such as taking out rotten food to avoid a smelly house and waiting (longer) to get the best lasagne. Our 
motivational biases make those situations (indicated by the grey-scale) harder, and therefore I refer to 
these situations as ‘motivationally incongruent’ throughout this thesis.

The coupling of action to reward and inaction to punishment is thought to reflect the 

statistics of the environment (Dayan et al., 2006), such that taking action generally leads to 

positive outcomes (e.g., when approaching tasty food) and holding back generally avoids 

negative outcomes (e.g., when staying away from rotten food). Therefore, the hardwired, or 

‘Pavlovian’ shaping of our behaviour is thought to be highly functional as it can serve to reduce 

cognitive computational load while generally still promoting the appropriate level of (in)action. 

However, hardwired activation can by its inherent global nature not be informative of which 

specific action is most optimal, particularly not in an ever-changing environment. For such 

adaptive action selection, a more flexible and computational costly control system is required, 

namely the instrumental learning system. The instrumental learning system adaptively learns 

action-outcome contingencies by assigning obtained rewards and punishments to the specific 

actions that elicited the outcomes (Dickinson and Balleine, 1994; Rescorla and Wagner, 1972; 

Robbins and Everitt, 2007). Thus, the value of a specific action in a given environment (e.g., 

ordering red wine in your favourite restaurant) can become more positive if that action is 

followed by a rewarding outcome (you receive wine that turns out to be delicious), promoting 

the repetition of that action in the environment (‘I’ll have the red wine again!’). Conversely, the 



12

CHAPTER 1

value of ordering red wine would have decreased if it was followed by an aversive outcome, 

such as the wine having gone sour, making you less likely to repeat that action (‘I’ll try a water 

instead!’). By tracking and updating the value of actions in the environment, the instrumental 

system is adaptive, but also requires more experience and is computational costlier than the 

innate or ‘hardwired’ control system. What has not been studied before, however, is whether 

the instrumental system might also itself be biased in coupling action to reward and inaction 

to punishment in order to speed up the learning of likely action-outcome associations. I 

address this question in chapter 3 and 4, where we developed an experimental paradigm and 

mathematical models to disentangle motivational biases in the instrumental control system 

from motivational biases in the Pavlovian system.

Neural mechanisms underlying motivational biases in action

The key neural candidate for the motivational biasing of action is the striatum, a 

phylogenetically (or, ‘evolutionary’) old brain structure that lies deep in the brain (Figure 

2), and particularly its modulation by the neurochemical dopamine (Boureau and Dayan, 

2011; Cools et al., 2011). One of the first studies linking striatal dopamine to motivated action 

showed that increasing dopamine in the ventral part of the striatum (i.e., nucleus accumbens) 

enhanced the behavioural activation elicited by reward cues (Taylor and Robbins, 1984). This 

dopaminergic enhancement was attenuated after lesioning of the ventral striatum (Taylor 

and Robbins, 1986). Originally, these findings were often interpreted to specifically highlight 

a role for striatal dopamine in pure reward processing, whereas nowadays these results are 

additionally interpreted as reflecting a role for striatal dopamine in the coupling of reward 

to behavioural activation.

Next to promoting behavioural activation in the face of reward, dopamine is also 

strongly tied to reward-based learning as demonstrated in perhaps one of the most famous 

neuroscientific studies by Schulz and colleagues (1998, 1997). Schulz et al. recorded neural 

activity in midbrain dopamine neurons, which are known to project to the striatum among 

others. The activity of these dopamine neurons increased after unpredicted rewards, 

in other words, when events turned out better than expected. Once animals learned to 

associate predictive cues with reward outcomes, the activity of dopamine neurons shifted 

from the reward onset to the cue onset, as now these reward predicting cues became the 

first indication that events were better than expected. This work and subsequent theorizing 

(Montague et al., 1996) highlighted the role of midbrain dopamine in reward prediction 

errors, which are used for reward learning. To elaborate, when an outcome is the same as 

you predicted, there is no need to update your beliefs as your beliefs appropriately reflect 

reality. When the actual outcome, however, is better or worse than you expected, it is useful 

to update your beliefs with this discrepancy between your prediction and reality (i.e. the 
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reward prediction error), such that your prediction will better reflect reality the next time. 

The work of Schultz et al. implicated dopamine in learning from reward prediction errors, 

and showed that midbrain dopamine neurons become active towards both unexpected 

reward outcomes, and reward predicting cues. These midbrain neurons project to the 

striatum (called mesolimbic projections) and release dopamine in the striatum.

Importantly, the striatum does not function in isolation and is part of a set of nuclei 

working in concert, together called the basal ganglia (Figure 2). Current models of basal 

ganglia function (Collins and Frank, 2015a, 2014; Frank, 2005; Frank and O’Reilly, 2006; Lloyd 

and Dayan, 2016) provide the theoretical basis of our work and therefore I will provide a brief 

overview of the basal ganglia functioning in the remainder of this section and cover the 

basal ganglia models and predictions in the relevant chapters (2, 3, and 5) as well.

The basal ganglia are connected through a direct ‘Go’ and indirect ‘NoGo’ pathway 

(Figure 2), both projecting to (among others) the motor cortex, which is responsible for 

motor responses. The direct ‘Go’ pathway (through double inhibition) has a net effect 

of activating the motor cortex, thereby promoting behavioural activation (DeLong and 

Wichmann, 2007; Mink and Thach, 1991). The indirect ‘NoGo’ pathway contains an additional 

inhibitory step, creating an inhibitory net effect of the motor cortex, thereby promoting 

behavioural inhibition. Crucially, mesolimbic dopamine (i.e., the dopamine released by 

midbrain neurons in the striatum) modulates the activity of these direct and indirect 

pathways. Mesolimbic dopamine release potentiates activity in the direct pathway through 

D1 receptors (Hernandez-Lopez et al., 1997), whereas dips in mesolimbic dopamine release 

potentiate activity in the indirect  pathway through D2 receptors (Hernandez-Lopez et al., 

2000). Putting it all together, reward cues and outcomes elicit peaks in mesolimbic dopamine 

release, which potentiate the direct ‘Go’ pathway and thereby promote behavioural 

activation. In contrast, punishment cues and outcomes are known to elicit dips in mesolimbic 

dopamine release, which potentiate the indirect ‘NoGo’ pathway and thereby promote 

behavioural inhibition. Altogether, this complex interplay of neural projections provides 

a prime candidate mechanism for the motivational biasing of behavioural activation.

In this thesis, I present multiple experiments that allowed us to test several predictions 

derived from the basal ganglia dopamine model in relation to the motivational biases in 

action: We test whether the motivational biases are reduced in a human genetic dopamine 

(partial) knock-out population (chapter 2). We causally assess whether these biases 

are affected by direct stimulation of the human ventral striatum (chapter 5) and by a 

pharmacological dopaminergic challenge (chapter 3). Moreover, we theorize that cue- and 

outcome-based dopamine bursts provide a neural substrate for the cue-based, Pavlovian 

biases and outcome-based, instrumental learning biases in action respectively. To this 

end, we also test whether the dopamine challenge affects both the Pavlovian biases and 

instrumental learning biases (chapter 3).
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Figure 2. Medial frontal cortex and the basal ganglia.
Top: Sagittal view of a schematic brain. Arrows indicate the ‘evolutionary younger’ medial frontal cortex 
and the ‘evolutionary older’ ventral striatum. The black line indicates roughly the location of the coronal 
slices shown below. Bottom: The basal ganglia direct (left) and indirect (right) pathways displayed for 
one hemisphere. Other basal ganglia connections are discarded for simplicity. On the left side, the direct 
‘Go’ pathway is presented. The Go pathway promotes behavioural activation. This pathway becomes 
stronger when much dopamine is released in the striatum, for example when expecting reward. On the 
right side, the indirect ‘NoGo’ pathway is presented. The NoGo pathway promotes behavioural inaction. 
This pathway ‘becomes stronger’ when little dopamine is released in the striatum, for example when 
anticipating punishment. The Go and NoGo pathways provide a neural candidate substrate for the 
motivational biasing of action. Adapted from iKnowledge (clinicalgate.com/the-basal-ganglia).
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Control over maladaptive motivational biases

As indicated above, the observed motivational biases in our behaviour might be quite functional 

as these biases are thought to follow the statistics of our environment (Dayan et al., 2006). 

Put simply, rewards might generally require us to take action in order for us to receive these 

rewards, whereas we might miss out on the rewards when we hold back. Instead, punishments 

generally require us to withhold from taking action in order to avoid these negative outcomes, 

whereas taking action might increase the risk of encountering the punishment. As such, it 

is likely to be highly beneficial for the survival of a species to couple taking action to reward 

contexts and couple behavioural inhibition to aversive contexts.

Although it is often beneficial to take action for reward, it is certainly not the case 

that getting reward always requires us to taking action (Figure 1). Sometimes it can more 

beneficial to wait and withhold from responding, for example when investing on the stock 

market. Conversely, punishment contexts might sometimes require us to take action in order 

to avoid aversive outcomes, for example working harder to avoid getting fired. In those cases, 

our motivational biases actually work against us and make it harder to behave adequately. 

The persistence of the biases was demonstrated in a striking example using baby chicks 

(Hershberger, 1986). In the Hershberger experiment, food-deprived baby chicks were placed in 

a runway containing a food cup that moved with half vs. twice the speed of the chicks. Thus, when 

the food cup moved with half the speed, chicks needed to move forwards to catch up with the 

food cup; When the food cup moved with twice the speed, chicks needed to move backwards 

for the food cup to catch up with them. While the chicks were perfectly able to approach the 

rewarding food cup, they were completely unable to move away from the food cup when they 

needed to. This experiment demonstrates that once the environmental requirements conflict 

with our innate motivational biases, we need to exert control over our behaviour (which can be 

extremely difficult) in order to overcome the now suddenly maladaptive motivational biases. 

Fortunately, in contrast to the Hershberger chicks, humans are often able to overcome our 

motivational drives when these conflict with our environmental requirements.

The brain region that has primarily been linked to our ability to overcome dysfunctional 

motivational biases, is the medial frontal cortex (Cavanagh et al., 2013). The frontal cortex 

is a phylogenetically new brain region that is particularly well-developed in humans (Teffer 

and Semendeferi, 2012). The exact mechanisms by which the midfrontal cortex reduces 

maladaptive motivational biases, however, still need to be elucidated. Here, I propose that the 

regulation of maladaptive motivational biases might rely on similar neural mechanisms that 

are evident in the classic cognitive control literature, as described in my previous work (van 

Driel, Swart, et al., 2015):

“Cognitive control refers to a set of mental capacities devoted to optimize goal-

directed behaviour in situations of multiple competing response alternatives (Botvinick et 

al., 2001; Ridderinkhof et al., 2011; Ridderinkhof et al., 2004). Neuroscience has tied these 
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adaptive control functions to processes in frontal brain networks (Fuster, 2000; Miller, 

2000), where the medial frontal cortex (MFC) is thought to signal the need for control 

in response to challenging situations (Alexander and Brown, 2011; Botvinick et al., 2004; 

Ito et al., 2003), which is communicated to the dorsolateral prefrontal cortex (DLPFC; 

MacDonald et al., 2000). Both of these regions exert top-down influence over lower, task-

related sensorimotor processing (Cohen et al., 2009; Danielmeier et al., 2011; Egner and 

Hirsch, 2005; Miller and D’Esposito, 2005), in order to adjust future behaviour (Kerns et 

al., 2004). Cognitive electrophysiology has provided compelling evidence of theta-band 

(3- to 8-Hz) oscillatory activity as the underlying “language” of communication within 

this network (see Cavanagh and Frank, 2014, and Cohen, 2014, for reviews), where the 

MFC has been proposed to be a “hub” for theta phase-synchronized information transfer 

(Cohen, 2011).

Cognitive control is a transient response, waxing and waning depending on the 

presence or absence of risks or demands such as response conflict. Indeed, because 

frontally mediated cognitive control is effortful, it is inefficient to recruit these mechanisms 

continuously (Ridderinkhof et al., 2004). Here, conflict is defined as the incongruence 

between a task-relevant learned response and a task-irrelevant stimulus feature, which 

results in slower and more error-prone behaviour relative to nonconflict (the “conflict 

effect”). […] Importantly, these trial-to-trial fluctuations in behavioural conflict effects 

have been shown to covary with trial-to-trial variability in midfrontal theta activity (Cohen 

and Cavanagh, 2011). […] Our general EEG results of increased frontal theta power as well 

as interregional phase synchrony after conflict are in accordance with a growing body of 

findings that have tied frontal theta-band activity to various cognitive control processes, 

including conflict adaptation (Cohen and Cavanagh, 2011; Pastötter et al., 2013), error 

processing (Luu et al., 2004; van Driel et al., 2012), task switching (Cunillera et al., 2012), 

and reinforcement learning (Cavanagh et al., 2010; van de Vijver et al., 2011). […]

From an anatomical perspective, mid–lateral frontal theta synchrony has been 

proposed to reflect MFC–DLPFC functional connectivity, which increases after conflict 

has been encountered (Cohen and Ridderinkhof, 2013). The current axiom in the 

cognitive control literature is that the MFC monitors for possible instances of conflict, 

and upon conflict detection, communicates the need for increased control to the DLPFC, 

which further implements control through top-down signals to motor and task-relevant 

sensory areas (Botvinick et al., 1999, 2004; Kerns et al., 2004; MacDonald et al., 2000; 

Ridderinkhof et al., 2011; Ridderinkhof et al., 2004; Ridderinkhof et al., 2004). However, 

direct regulatory top-down signals from MFC to guide behaviour in situations of conflict 

have also been observed (Cohen et al., 2009; Danielmeier et al., 2011; Kennerley et al., 

2006; Ridderinkhof et al., 2004), suggesting a more integrative function of the MFC 

(Shenhav et al., 2013).”
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To recapitulate, classic cognitive control models implicate the medial frontal cortex in 

detecting conflict between competing response options and signalling the need for control 

to a network of task-related regions. Accordingly, the decision threshold can be adjusted 

(Cavanagh et al., 2011) in order to prevent prepotent, impulsive responses, and allow for goal-

directed responses to take over. Here I propose that the medial frontal cortex is similarly involved 

in detecting conflict between prepotent, Pavlovian responses and goal-directed, instrumental 

responses, and signalling the increased need for control to task-related sites. Accordingly, the 

decision threshold can be adjusted to prevent Pavlovian responses and allow for instrumental 

behaviour. We assess the presence of these hypothesized neural mechanisms in a healthy 

student population (chapter 4) and subsequently test whether reducing the Pavlovian biases 

with neuromodulation reduces the neural responses to Pavlovian conflict (chapter 5).

Aims and outline of this thesis

The aim of this thesis is twofold. The first aim is to provide a deeper understanding of the 

neurocomputational mechanisms that give rise to the motivational biasing of action, focusing 

particularly on dopamine function in the basal ganglia. The second aim is to provide a better 

understanding of the neurocomputational mechanisms involved in regulating motivational 

drives when they become dysfunctional, allowing for adequate behaviour, focusing particularly 

on medial frontal cortex functioning. To achieve these aims, we have conducted the four 

experiments presented in this thesis.

First we assessed whether the motivational biases in action are altered in a highly 

unique genetic population, namely carriers of a dopamine-related pathogenic genetic variant 

(or, ‘mutation’), which putatively results in reduced dopamine function. We compared the 

motivational biases of this genetic group with a control group in chapter 2.

We continued to assess the role of dopamine in chapter 3, where we directly manipulated 

the dopamine system with a (non-selective) dopaminergic drug, namely methylphenidate 

(‘Ritalin’). In this study, we first developed novel computational models that allowed us to 

disentangle hardwired, ‘Pavlovian’ biases from motivational biases in the learning system. 

We then assessed the effect of methylphenidate on these Pavlovian and instrumental biases. 

Moreover, we tested whether individual differences in the effects of methylphenidate could be 

predicted by proxy-measures of baseline dopamine function.

Once we established the Pavlovian and instrumental mechanisms driving motivational 

biases, we continued with uncovering neural mechanisms related to the reduction of 

maladaptive biases. In chapter 4, we assessed whether the medial frontal signals are related 

to reduction of these biases using electroencephalography (EEG). Specifically, we assessed 

whether the local, medial frontal activity might be related to the level of Pavlovian conflict, 

whereas the network-wide functional connectivity might be more directly related to the 
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suppression of Pavlovian response tendencies.

In chapter 5 we assessed the causal role of the human ventral striatum in the 

motivational biasing of action. To this end, we directly stimulated the ventral striatum with 

deep brain stimulation (DBS) in a psychiatric population (obsessive-compulsive disorder 

patients) that receive DBS as part of their treatment. Here, we tested whether the disruption 

of striatal communication disrupts the motivational biases, and whether this disruption 

of the biases consequently reduces the conflict-related neural signatures over the medial 

frontal cortex.

Taken together, this thesis presents a state-of-the-art multidisciplinary approach, 

combining causal interventions (pharmacology, DBS), sophisticated behavioural paradigms, 

computational modelling, neuroimaging, genetics, and clinical work, to further our 

understanding of the neurocomputational mechanisms of motivational biases in decision-

making. In chapter 6 I provide a summary of the main findings, discuss and integrate the 

most relevant findings of this thesis, and highlight future directions.
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Abstract

Catecholamines (particularly dopamine) have long been implicated in motivation, learning 

and behavioural activation. Benign variants in dopamine-regulating genes have widely been 

linked to these processes as well, yet the cognitive effects of carrying pathogenic variants in 

the gene coding for tyrosine hydroxylase, which transforms tyrosine into dopamine’s direct 

precursor L-Dopa, have never been studied. Here, we assessed for the first time whether 

carriers of tyrosine hydroxylase deficiency (THD) show altered motivated action due to putative 

reductions in dopamine synthesis. To this end, we employed a motivational Go/NoGo learning 

task, which is sensitive to manipulations in dopamine function and compared 16 family 

members of THD patients with 20 education- and age-matched controls. In the first learning 

phase of this task, subjects learnt to make Go or NoGo responses to cues that predict reward vs. 

punishment. In the second transfer phase, the subjects were presented with pairs of cues and 

chose the one they preferred, in the absence of reinforcement. Cue valence strongly biased 

Go/NoGo responding in the learning phase, such that subjects made more Go responses 

to reward than punishment cues. The groups did not significantly differ in this motivational 

bias. However, the THD carriers exhibited a shift in preference from NoGo-to-Win to Go-to-

Avoid cues relative to matched controls during the transfer phase. These results suggest that 

subjective valuation is altered in THD carriers, potentially due to catecholamine-dependent 

changes in reward expectations, whereas task performance was unaffected. This pilot study 

provides a first insight into the cognitive consequences of carrying pathogenic TH variants, 

focusing on alterations in the reward valuation system and motivational biases in action.

Introduction

The catecholamines (particularly dopamine) have long been known to play a role in motivational 

and cognitive functions (Brozoski et al., 1979; Schultz et al., 1997), such as motivation, learning, 

and behavioural activation and vigour (Berridge and Robinson, 1998; Cools et al., 2009; Frank et 

al., 2004; Robbins and Everitt, 2007; Salamone et al., 2005). Several hereditary neurometabolic 

disorders affecting synthesis, breakdown, and transport of the catecholamines have been 

described (Kurian et al., 2011), including tyrosine hydroxylase deficiency (THD). THD is an 

extremely rare autosomal recessive disorder in which tyrosine hydroxylase, i.e. the rate limiting 

step in catecholamine synthesis, is impaired (Bräutigam et al., 1999; Willemsen et al., 2010), see 

Figure 1. THD leads to neurological symptoms, ranging from mild motor distortions to severe, 

early onset encephalopathy and can be treated with L-Dopa supplementation (Willemsen et 

al., 2010). Although benign variants in dopamine-regulating genes, such as the dopamine 

transporter polymorphism (for which the functional consequences are less clear) have widely 

been linked to motivation, learning, and action (Frank and Fossella, 2011), the effect of carrying 

a pathogenic variant in the TH gene (for which the functional consequences are more severe) 
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on these processes has not been studied before. Here we assess for the first time the cognitive 

consequences of carrying pathogenic TH variants in relatives of THD patients.

Figure 1. Simplified scheme of the biosynthesis of the catecholamines dopamine, noradrenaline and 
adrenaline.
Tyrosine hydroxylase deficiency (THD) affects the catecholamine synthesis by impairing enzymatic 
functioning of tyrosine hydroxylase (TH; marked in red) (Cansev and Wurtman, 2007), which catalyses the 
transformation of tyrosine into 3,4-dihydroxyphenylalanine (L-Dopa), the direct precursor of dopamine 
(Kurian et al., 2011). TH activity is the rate-limiting factor in catecholamine synthesis (Levitt et al., 1965), 
and consequently THD patients suffer from a critical reduction of catecholamine levels (Bräutigam et al., 
1999; Willemsen et al., 2010). THD arises from an autosomal recessive pathogenic variant in both TH genes 
on chromosome 11p15.5 (OMIM #605407; Willemsen et al., 2010; Zafeiriou et al., 2009). Several pathogenic 
variants have been described (missense variants leading to partial loss of enzyme activity, deleterious 
variants leading to protein truncation, or pathogenic variants in the promoter region leading to reduced 
TH gene transcription) and patients can be homozygous or compound heterozygous (Willemsen et al., 
2010). PAH = Phenylalanine; AADC = Aromatic amino acid decarboxylase.

As THD is an autosomal recessive disorder, heterozygous carriers of pathogenic variants in the 

TH gene (‘THD carriers’) are thought to be free of neurological symptoms (i.e., no overt cognitive, 

neurological and psychiatric impairments have been observed). However, given the clear parallels 

between THD and other monoamine neurotransmitter disorders, it is reasonable to assume that 

THD carriers express lower TH enzyme activity than non-carriers. For example, lower enzyme activity 

has been determined for first- and second-degree relatives of patients with aromatic L-amino acid 

decarboxylase (AADC) deficiency by Verbeek and colleagues (2007). Enzymatic activity analyses 

showed that the unaffected carriers had 35-40% lower AADC enzyme activity than healthy controls, 

usually in the absence of any clinical signs. AADC deficiency parallels TH deficiency because both are 

enzyme deficiency disorders affecting the catecholamine system, but each affects the biosynthesis 

of catecholamines at different stages (Figure 1) and AADC additionally affects the biosynthesis of 

serotonin (Willemsen et al., 2010). Accordingly, we hypothesised that carrying a pathogenic variant 

in the TH gene, which likely leads to decreased TH enzymatic activity and consequently decreased 
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dopamine biosynthesis, would be associated with subtle adaptations in motivated action and 

learning that surface only when probing behaviour using sophisticated catecholamine-sensitive 

experimental paradigms. Here we focus on a paradigm that has been previously established to be 

sensitive to manipulation of catecholamines, namely a motivational Go/NoGo learning paradigm 

(Guitart-Masip et al., 2014b; Swart et al., 2017).

Dopamine has been linked to behavioural activation in the context of reward (Taylor and 

Robbins, 1986, 1984), where enhanced dopamine facilitates instrumental activation in the context 

of reward conditioned cues (Wyvell and Berridge, 2000), and lowered dopamine levels reduce 

instrumental activation in the context of these cues (Dickinson et al., 2000; Hebart and Gläscher, 

2015; Lex and Hauber, 2008). Conversely, punishment conditioned cues suppress instrumental 

responding (Davis and Wright, 1979; Huys et al., 2011), and striatal dopamine has been proposed 

to also contribute to such aversively motivated behaviour (Faure et al., 2008; Lloyd and Dayan, 

2016). These motivational biases in action (i.e., behavioural activation and inhibition by reward and 

punishment cues respectively) is consistent with current accounts of striatal dopamine function 

(Collins and Frank, 2015b, 2014, Frank, 2006, 2005; Lloyd and Dayan, 2016), suggesting that 

dopamine bursts elicited by predicted rewards potentiate the basal ganglia direct ‘Go’ pathways, 

thereby promoting behavioural activation. Consequently, relatively enhanced dopamine responses 

would further facilitate behavioural activation. In contrast, dips in dopamine firing elicited by 

predicted punishments potentiate the basal ganglia ‘NoGo’ pathway, promoting behavioural 

inhibition. In this study, we hypothesized that THD carriers might show weaker motivational biases 

in action compared with controls, due to reduced dopamine function.

We set out to investigate the consequences of carrying a pathogenic TH genetic variant on 

motivational biases in action. To this end, we employed a motivational Go/NoGo learning task 

that requires subjects to learn to make Go or NoGo responses to cues in order to obtain reward or 

avoid punishment (cf. Guitart-Masip et al., 2011; Swart et al., 2017). The task quantifies the degree to 

which subjects are biased towards Go responding when pursuing reward, and NoGo responding 

when avoiding punishment. The task also allowed us to assess the valuation of these motivational 

Go and NoGo cues, by assessing explicit, subjective cue preferences after learning (Cavanagh et 

al., 2013). We contrasted THD carriers with an education- and age-matched control group in a 

between-subject design.

Methods

Subjects
For this study, all known Dutch families of a child with THD (n=8) were approached. We tested 

one group of THD carriers (n=16; sample size limited by the THD prevalence) and one education- 

and age-matched control group (n=20; see Table 1 for demographics). All subjects were native 

Dutch speakers. The THD carrier group consisted predominantly of the biological parents of TH 
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deficient children (8 mothers, 7 fathers), and of one other family member (aunt) who was a known 

THD carrier. Because THD is an autosomal recessive heritable disorder, both biological parents 

are obligated carriers of a pathogenic variant in one TH allele (Lüdecke et al., 1995), and genetic 

assessments confirmed the presence of a pathogenic variant in the TH gene. The THD carrier 

group was recruited via the treating child neurologists (MW and TW), and the control group via 

the Radboud University campus. Potential subjects received information prior to the testing day 

and signed informed consent prior to participation. THD carriers also signed a consent form that 

allowed us to request results of their genetic assessments at according hospitals to confirm their 

pathogenic TH variant. Subjects with abnormal vision (e.g., colour-blindness) were excluded from 

this study, resulting in the exclusion of one THD carrier (this subject did not complete the task). One 

other THD carrier could not complete the task due to prior medical reasons. Additional exclusion 

criteria for the control group were use of dopaminergic medication, (history of) neurological and 

psychiatric treatment, and alcohol or drug dependence. Subjects received a reimbursement for 

travel expenses and EUR8,- per hour for their time-investment.

Experimental procedure
The study contained one test session, including self-paced breaks. The test session took place at 

the Donders Institute or at the subjects’ home. The test session consisted of a cognitive task battery 

(~95 min) and a neuropsychological assessment (~60 min). The THD carrier group additionally 

completed a neurological and psychiatric screening (~60 min). The cognitive task battery included a 

probabilistic reversal learning task (den Ouden et al., 2013), a delayed match-to-sample task (Fallon 

and Cools, 2014), a motivational Go/NoGo learning task (see below), and the Listening Span Test 

(Daneman and Carpenter, 1980). In this chapter, I focus on the motivational Go/NoGo learning task, 

but note that we intend to publish an overarching paper combining all independent assessments. 

The neuropsychological assessment consisted of i) neuropsychological tasks, namely the Dutch 

reading test (NLV; Schmand et al., 1991), Story Recall Test (Wechsler, 1997), Box Completion 

(Salthouse, 1994), Number Cancellation (Mesulam, 1985), Stroop task (Stroop, 1935), Verbal Fluency 

(Benton and Hamsher, 1983), and ii) of self-report questionnaires, namely the Barratt Impulsiveness 

Scale (BIS-II; Patton et al., 1995), Obsessive Compulsive Inventory revised (OCI-R; Foa et al., 2002), NEO 

personality inventory (NEO-FFI; Costa and McCrae, 1992), Need for Cognition Scale (NfC; Cacioppo 

et al., 1984), Perceived Stress Scale (PSS; Cohen et al., 1983), Beck Depression Inventory (BDI; Beck 

et al., 1996), and the Hospital Anxiety and Depression Scale (HADS; Zigmond and Snaith, 1983). 

The neurological and psychiatric screening consisted of a general health assessment, standardized 

neurological exam (Clarke et al., 2016), Unified Parkinson’s Disease Rating Scale (UPDRS-III; Fahn 

and Elton, 1987), Fahn-Marsden Dystonia Movement Scale (FMDM; Burke et al., 1985), and the Mini 

International Neuropsychiatric Interview questionnaire (MINI; Sheehan et al., 1998). The study was 

approved by the local ethics committee (CMO / METC Arnhem Nijmegen: CMO2014/288), and in 

line with the Declaration of Helsinki.
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THD carriers (n=14) Control group (n=20) Group difference

Matching criteria

Gender (women / men) 9 / 5 11 / 9 p = .588

Age (Mean (SD), range) 49.9 (8.8), 36 - 65 50.8 (9.5), 30 - 63 p = .788

Education (n) p = .946

Lower education 8 11

Higher education 5 8

University 1 1

NLV (Mean (SD)) 79.6 (15.3) 80.1 (9.2) p = .914

Control measures

BDI (Mean (SD)) 4.6 (4.1) 4.4 (6.0) p = .921

HADS (Mean (SD)) 7.1 (4.3) 7.3 (4.8) p = .910

PSS (Mean (SD)) 11.0 (5.2) 12.0 (5.2) p = .588

Measures of interest

BIS-II (Mean (SD)) 55.4 (6.0) 62.9 (8.4) p = .007*

Table 1. Demographics for the THD carrier group (n=14) and the matched control group (n=20).
The control group was successfully matched to the THD carrier group in terms of gender, age, education, 
and verbal intelligence (NLV). We checked whether the THD carriers showed increased perceived stress 
(PSS; Perceived Stress Scale) and depressive or anxiety symptoms (BDI; Beck Depression Inventory. HADS; 
Hospital Anxiety and Depression Scale) as a potentially direct consequence of caring for a child with severe 
medical problems. The groups did not significantly differ on any of these control measures. Finally, we 
assessed whether the groups significantly differed in terms of trait impulsivity (BIS; Barratt Impulsiveness 
Scale), which has been linked to dopamine function with PET (Buckholtz et al., 2010; Kim et al., 2014; Lee 
et al., 2009; Reeves et al., 2012) and has commonly been used as a proxy variable for baseline dopamine 
function within our group (Frobose et al., 2017; Swart et al., 2017). The THD carriers had significantly lower 
trait impulsivity scores than the matched controls.

Motivational Go/NoGo learning task
We employed a motivational Go/NoGo learning task (similar to Guitart-Masip et al., 2011; 

Swart et al., 2017), in which cue valence (Win vs. Avoid cue) was orthogonal to the instrumental 

response (Go vs. NoGo). In this task, subjects needed to learn to make Go or NoGo responses 

in order to obtain rewards (Win cues) or avoid punishments (Avoid cues). Each cue had one 

correct response, which subjects needed to learn by trial-and-error based on feedback. See 

Figure 2 for an overview of the task.

Each trial started with a cue presentation (1.2s) during which subjects could either press the 

spacebar (Go response) or wait until the cue disappears (NoGo response). Each cue had a coloured 

edge indicating the cue valence. A green edge was indicative of a Win cue, which could only be 

followed by reward or a neutral outcome. Conversely, a red edge was indicative of an Avoid cue, 

which could only be followed by a punishment or a neutral outcome. The cue was followed by a 

fixation cross (0.5s), and response-dependent feedback (1s). More specifically, correct responses to 

Win cues were followed by reward 75% of the time, and by neutral outcomes otherwise. Similarly, 
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correct responses to Avoid cues were followed by neutral outcomes 75% of the time, and by 

punishment otherwise. For incorrect responses, these probabilities were reversed. In total there 

were four cue types for which cue valence was orthogonalised to the required action (Figure 2). 

Reward consisted of a green ‘+100’ text and a flourish sound. Neutral outcomes consisted of a grey 

‘000’ text and neutral beep. Punishment outcomes consisted of a red ‘-100’ text and a low buzz. Trials 

ended with a randomized inter-trial interval (1.25-2s) during which a fixation cross was presented.

The task was preceded by instructions, including two practice rounds. Subjects were 

instructed i) that each cue had one optimal response, ii) that each cue could be followed by either 

reward or punishment, and iii) about the probabilistic nature of the feedback. Subjects received a 

self-paced break halfway during the task. Each cue was presented 30 times in pseudorandomized 

order. The task was performed twice with independent, counterbalanced stimulus sets.

 

Figure 2. Motivational Go/NoGo learning task.
(a) Trials start with a cue, indicating the response window, followed by feedback. Win cues can be followed 
by reward, whereas Avoid cues can be followed by punishment. Image adapted from (Swart et al., 2017). 
(b) There are four cue-types for which cue valence (Win vs. Avoid) are orthogonalised to the required 
action (Go vs. NoGo). (c) Each cue has one correct response, which subjects need to learn by trial-and-error 
based on the feedback. Correct responses are followed by reward (Win cues) and neutral outcomes (Avoid 
cues) 75% of the time, or by neutral outcomes (Win cues) and punishment (Avoid cues) otherwise. These 
probabilities are reversed for incorrect responses. (d) The learning task is followed by a transfer phase. 
Cues are presented in pairs and subjects are instructed to select the most rewarding cue. The coloured cue 
edges are omitted during this phase.
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After finishing the learning task, subjects completed a transfer phase (Cavanagh et 

al., 2013) in which we assessed the relative, subjective cue values. During this phase, cues 

from the last stimulus set were presented in pairs, and subjects were asked to select the 

most rewarding cue. This transfer phase allowed us to verify that subjects experienced the 

Win cues as more rewarding than the Avoid cues, but more importantly, whether subjects 

preferred the cues requiring active Go response over the cues requiring passive NoGo 

responses, as has been shown previously (Cavanagh et al., 2013; Swart et al., 2018). The 

transfer phase contained 48 trials. During this phase, the coloured cue edges signalling 

valence were omitted, in order to probe the learned relative preferences and minimize 

interference by the explicit cue valences.

Statistical analysis
In this study we investigated the consequences of carrying a pathogenic TH genetic variant 

on motivational biases in action. To this end, we first tested whether subjects adjusted Go/

NoGo responding to the cue valence, which we refer to as the motivational bias, and then 

assessed whether the THD carriers showed a reduced motivational bias compared with the 

control group. We additionally assessed whether subjects adjusted Go/NoGo responding 

to the required action, in line with task learning, and whether the groups differed in terms 

of task learning. Accordingly, the statistical model for Go responses included the between-

subject factor Group (THD carrier vs. control), and the within-subject factors Valence (Win 

vs. Avoid cue) and Required Action (Go vs. NoGo). We analysed reaction times (RTs) as 

a complementary measure of behavioural vigour. Here, we restricted the RT analysis to 

correct responses, i.e. to the Go cues, to reduce the model’s effects structure and thereby 

increase statistical power. Thus, the RT model included the within subject factors Valence 

and the between subject factor Group. Given that we set out to test the hypothesis that 

the motivational biasing of action might be reduced in the THD carriers due to assumed 

dopamine depletion, we employed one-sided tests for the Valence x Group interactions. 

These one-sided tests are clearly indicated in the Results section.

We analysed trial-by-trial choices (RTs) with logistic (linear) mixed-effect models 

using lme4 in R (Bates et al., 2014; R Developement Core Team, 2015). The mixed-effect 

analysis has a clear advantage over ANOVA particularly for the RTs, as mixed-effect models 

take the number and consistency of RTs per subject into account, thereby accounting for 

within and between subject variability. RTs were log-transformed to improve normality 

and RTs<100ms were discarded from the analysis. The mixed models included all main 

effects and interactions, and a full random effects structure (Barr, 2013; Barr et al., 2013). We 

estimated effect sizes based on the corresponding repeated measures ANOVA performed 

within SPSS, given that there is no clear consensus on the estimation of effect size for 

mixed-models. We report partial eta squared (ηp
2) as a measure of effect size for all group 
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effects, where we interpret ηp
2 >.14 as large effects, ηp

2 >.06 as medium effects, and ηp
2 >.01 

as small effects, in line with (Cohen, 1992, 1988). Finally, we repeated all analyses including 

the control covariates age, gender and education to confirm that our conclusions remain 

the same.

Finally, we assessed whether the THD carrier group differed from the control group 

in their relative cue preferences during the transfer phase. To this end, we analysed how 

often each cue was chosen during the transfer phase relative to chance. We analysed the 

frequency data with repeated measures ANOVA in SPSS using the between-subject factor 

Group, and the within-subject factors Valence and Required Action.

Results

General task performance and subjective valuation
Before addressing differences between the THD carrier group and the control group, we 

established that expected task effects were present across groups. First, we assessed 

behaviour as a function of the required actions, related to task learning, and second, we 

assessed behaviour as a function of cue valence, related to motivational biases. Subjects 

made more Go responses to Go than NoGo cues (Χ2
1=33.9, p<.001; Figure 3), indicating 

that subjects adjusted their responses to the instrumental requirements. Independent of 

the action requirements, subjects made more Go responses (Χ2
1=44.7, p<.001; Valence x 

Required Action: Χ2
1<1, p=.926) and faster Go responses (Χ2

1=48.8, p<.001) to Win than 

Avoid cues, which we refer to as a motivational bias. Altogether, the current sample shows 

the commonly observed task effects related to task learning and motivational biases 

(Guitart-Masip et al., 2014a; Swart et al., 2018, 2017).

Before turning to the group differences, we assessed the choices during the transfer 

phase across groups. During the transfer phase, cue pairs were presented and subjects 

needed to select the most rewarding cue. Accordingly, subjects selected the Win cues 

more frequently than the Avoid cues (F1,32=93.4, p<.001), indicating that subjects indeed 

considered Win cues more rewarding than the Avoid cues. Furthermore, subjects selected 

Go cues more often than NoGo cues (F1,32=10.1, p=.003), which was particularly driven 

by the Win cues (simple effect of Required Action: F1,32=19.6, p<.001), rather than the 

Avoid cues (simple effect of Required Action: F1,32=1.3, p=.263; Required Action x Valence: 

F1,32=7.5, p=.010). This pattern of results is also consistent with previous reports (Cavanagh 

et al., 2013; Swart et al., 2018), showing enhanced relative values for cues associated with 

Go responses relative to cues associated with NoGo responses.
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Figure 3 (right page). Behavioural performance.
(a) Trial-by-trial responses for the THD carriers (left) and controls (right) using a sliding average of 5 trials. 
The shaded areas indicate the standard error of the mean. Subjects increased Go responses for Go cues 
and NoGo responses for NoGo cues over trials (p<.001), indicative of task learning. From the first trial 
onwards, subjects made more Go responses to Win than Avoid cues (p<.001), which we refer to as the 
motivational bias. (b-c) Average proportion Go responses and reaction times. Circles indicate individual 
subjects and error bars indicate the standard error of the mean. The THD carrier group and the control 
group did not show any significant differences in proportion Go responses and reaction times (p>.05). 
ns indicates p>.05. (d) Cue preferences as measured in the transfer phase relative to chance level. Left: 
Total choice frequency per cue. Right: Choice frequency per cue pair. The groups particularly differed in 
their relative preferences when comparing the NoGo-to-Win and the Go-to-Avoid cues (p=.013; all other 
pairs: p>.05), where the THD carrier group selected the NoGo-to-Win cue significantly less often than the 
control group. Remarkably, this reduced preference for the NoGo-to-Win cues was not explained by a 
lower reward history, as the THD carriers performed numerically better for the NoGo-to-Win cues (panel 
b). * indicates p<.05. (N)GW=(No)Go-to-Win; (N)GA=(No)Go-to-Avoid.

Altered subjective cue valuation, but not task performance, in THD carriers vs. matched 
controls
Having established the presence of common task effects across groups in both the learning 

and transfer phase, we continued with contrasting the THD carrier group with the control 

group. First, we addressed whether the groups differed in terms of their motivational bias, that 

is, the differential responding to Win and Avoid cues. The groups did not differ significantly in 

the proportion of Go responses for Win vs. Avoid cues (Χ2
1<1, p=.224, one-sided test, ηp

2=.006) 

or in terms of RTs (Χ2
1<1, p=.394, one-sided test, ηp

2<.001), see Figure 3. We only observed a 

small effect size for a reduced valence effect in the THD carrier group on the NoGo trials, which 

did not reach statistical significance in the current sample (Required Action x Valence x Group: 

Χ2
1<1, p=.872, ηp

2=.013). Taking together, we did not observe a significant reduction in the 

valence-based biases in the THD carriers compared with the matched controls. The groups 

also did not significantly differ in the extent to which they adjusted their Go/NoGo responses 

to the required action (Χ2
1<1, p=.358, ηp

2=.047), nor in the overall proportion of Go responses 

or RTs (Go: Χ2
1=2.3, p=.127, ηp

2=.051; RT: Χ2
1<1, p=.515, ηp

2=.019). We confirmed that these 

results remained unchanged when including age, education, and gender as control covariates 

in the models. Altogether, we did not observe significant differences in the task performance 

between the THD carrier group and the control group in the learning phase.

Second, we addressed group differences in the subjective cue preferences as measured 

in the transfer phase. The THD carrier group showed a marginally weaker preference for the 

Win vs. Avoid cues (Group x Valence: F1,32=3.7, p=.064, ηp
2=.103), and showed a significantly 

stronger preference for the Go vs. NoGo cues compared with the matched controls (Group 

x Required Action: F1,32=4.5, p=.042, ηp
2=.123; Group x Valence x Required Action: F1,32<.1, 

p=.934, ηp
2<.001). These group differences specifically reflected a shift in the valuation of 
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the incongruent cues (i.e. Go-to-Avoid and NoGo-to-Win cues), see Figure 3. The groups 

indeed differed significantly in their choices on the NoGo-to-Win vs. Go-to-Avoid cue 

pairing (t32=2.6, p=.013), and not on the other cue pairings (all: p>.05). To elaborate, the 

THD carriers selected the NoGo-to-Win significantly less often than the control group 

when choosing between the NoGo-to-Win vs. Go-to-Avoid cue, suggesting that the THD 

carriers’ preferences were less affected by valence and more by the associated action. 

Importantly, this shift in cue preferences was not explained by a differential outcome 

history for the groups (NoGo-to-Win – Go-to-Avoid: t32=1.5, p=.155; NoGo-to-Win: t32=1.4, 

p=.158; Go-to-Avoid: t32<.1, p=.925). If anything, the THD carriers received (numerically) 

more rewards for the NoGo-to-Win cues relative to controls, yet significantly preferred this 

cue less. This group difference was also not purely explained by the group difference in trait 

impulsivity; trait impulsivity did not significantly relate to the choices on the NoGo-to-Win 

vs. Go-to-Avoid cue pairing (R=.26, p=.140), and the group difference in cue preference 

remained significant when correcting for impulsivity (t31=2.1, p=.043). The transfer results 

also remained unchanged when correcting for age, education, and gender in the model. 

Together these results raise the hypothesis that THD carriership affects relative cue 

preferences in the context of motivationally incongruent cues, while leaving motivational 

biasing of action unaltered.

Discussion

Here we assessed the effects of carrying a pathogenic variant in the tyrosine hydroxylase 

(TH) gene on the motivational biasing of action by comparing family members of tyrosine 

hydroxylase deficient (THD) patients with education- and age-matched controls. In both 

the carriers and matched controls, cue valence strongly biased Go/NoGo responding, such 

that subjects made more Go responses when playing for reward (Win cues) than when 

trying to avoid punishment (Avoid cues). This motivational bias in Go/NoGo responding 

was not significantly reduced in the THD carriers relative to the controls. In contrast, the 

THD carriers differed from the matched controls in relative cue preferences. The carriers 

showed a reduced impact of valence on their subjective cue valuation, specifically in 

the context of incongruency between the action requirements and the valence. In other 

words, they liked NoGo-to-Win less, and Go-to-Avoid cues more, relative to controls.

This study is part of the first project addressing the neurocognitive consequences for 

heterozygous carriers of a pathogenic variant in the TH gene. In this chapter, we set out to 

specifically assess the consequences on the well-established motivational biases in action. 

We hypothesized that family members of THD patients have a mild reduction in dopamine 

synthesis that would result in reduced motivational biases in action, in line with current 

accounts of striatal dopamine function (Collins and Frank, 2015b, 2014; Frank, 2005; Frank 
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et al., 2004; Lloyd and Dayan, 2016) and prior results from our group showing that increases 

in catecholamine transmission with methylphenidate enhanced such motivational action 

biasing (Swart et al., 2017). We replicated commonly observed motivational biases in both 

active actions and response times (Guitart-Masip et al., 2014a; Swart et al., 2018, 2017), 

reflected in the increased proportion and speed of Go responses to Win relative to Avoid 

cues. This motivational biasing of Go responses and response times was not significantly 

reduced in the THD carrier group. These results might indicate that the motivational biasing 

of action is not sensitive to reductions in TH enzymatic activity. However, we did observe 

a small effect size for a reduced motivational bias on the NoGo cues, meaning that we 

cannot exclude the possibility that the lack of significance was due to a lack of statistical 

power. Indeed, patients with Parkinson’s disease off dopaminergic medication (i.e., when 

striatal dopamine is severely depleted) have been shown to express enhanced NoGo-to-

Win performance (Moustafa et al., 2008) and reduced willingness to exert effort for reward 

(Chong et al., 2015), which both normalize ON dopaminergic medication. Thus, our current 

sample sizes might have been too small to detect significant group differences.

On the other hand, the absence of a significant reduction in motivational biasing 

of action in the carriers might be due to a degree of evolutionarily preprogrammed 

redundancy in (and thus compensatory capacity of ) monoamine synthesis enzymatic 

activity (Wassenberg et al., 2012). Put simply, although heterozygous state must result 

in lower tyrosine hydroxylase enzymatic activity in carriers, this might have no clinical 

significance on catecholamine levels. We argue that this is less likely given that benign 

variants in the monoamine pathways without known functional effects on protein level 

have long been thought to be associated with subtle motivational and/or cognitive 

deficits, and to contribute to several neuropsychiatric disorders (Haavik et al., 2008).

The absence of significant group differences in the motivational biases might 

raise the question whether dopamine function is indeed altered in THD carriers. More 

direct measures of dopamine function, for example dopamine synthesis capacity or 

turnover, are required to conclusively answer this question, yet various aspects of the 

data support the assumptions that dopamine function is altered. First, the THD carriers 

displayed significantly lower trait impulsivity scores than the matched controls, and trait 

impulsivity has been linked to dopamine function with PET (Buckholtz et al., 2010; Kim et 

al., 2014; Lee et al., 2009; Reeves et al., 2012). Thus, the significant group difference in trait 

impulsivity is consistent with the assumptions that THD carriers express altered dopamine 

function. Second, the THD carriers show modulated relative cue preferences, which we 

will cautiously link to dopamine function below. Finally, carriers of a pathogenic variant 

in the related AADC gene also express significantly lower AADC enzyme activity (Verbeek 

et al., 2007). Considering the parallels between AADC and TH deficiency (also described 

in the introduction of this chapter), we expect a similar decrease in TH enzyme activity 
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(and consequently dopamine synthesis) in THD carriers. Taken together, we stand by our 

initial assumption that dopamine function is altered in THD carriers, yet we acknowledge 

that future studies measuring TH enzyme activity or dopamine function more directly are 

needed to verify this assumption.

At the end of the learning task, subjects were asked to select the most rewarding cue 

out of presented cue pairs. During this transfer phase, the carrier group showed altered 

relative cue preferences compared with the matched control group, as evidenced by a 

shift in preference from the NoGo-to-Win cues towards the Go-to-Avoid cues. The altered 

cue preferences in the absence of altered motivated action is particularly remarkable when 

considering that motivation and valuation typically go hand in hand (Niv et al., 2007). Yet, 

it has been shown that these processes can be dissociated (Miller et al., 2014), suggesting 

that these processes might rely on differential mechanisms. Although the transfer phase 

was not the primary measure of the current study, we will discuss potential explanations 

for the observed group differences in the following section.

First of all, the altered relative preferences in the carriers might reflect changes in 

the outcome predictions, presumably due to reduced dopamine function. Dopamine 

has classically been linked to reward prediction (Schultz et al., 1998, 1997), and has been 

linked to the prediction of hedonic pleasure as well (Sharot et al., 2009), even though the 

role of dopamine in instant hedonic pleasure or ‘liking’ has been disputed (Berridge, 2009; 

Berridge et al., 2009). Sharot and colleagues showed that administration of a dopamine-

enhancing drug (L-Dopa) increased subjective estimations of future hedonic pleasure to 

positive future life events. Similarly, administration of L-Dopa enhanced the optimism bias 

(for a review see Sharot, 2011), as L-Dopa reduced negative expectations about the future 

(Sharot et al., 2012). Consistent with these findings, the assumed dopamine reduction 

in the THD carriers might have led to attenuated expectations of reward outcomes 

and associated hedonic pleasure. Such a dopamine-dependent attenuation in reward 

expectations would explain why the carriers indicated the Win cues less often as rewarding 

compared with the matched controls.

Notably, the attenuated preference of Win cues in the carrier group was specific to the 

context where cue valences were motivationally incongruent with the action requirements 

(i.e. NoGo-to-Win vs. Go-to-Avoid cues). In other words, the group difference in value-based 

preferences only surfaced when these preferences were inconsistent with action-based 

preferences. To elaborate, subjects expressed an overall relative preference of the Go cues 

over the NoGo cues, in line with previous studies (Cavanagh et al., 2013; Swart et al., 2018). 

In general, approach and avoid behaviour are known to respectively increase positive and 

negative valuation of novel stimuli (e.g. Huijding et al., 2011; Laham et al., 2014; Woud et 

al., 2013, 2008), and approach-avoid training is even used to retrain approach tendencies 

of harmful consumption behaviour, such as alcohol use and unhealthy eating (Kakoschke 
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et al., 2017). Similarly, freely chosen options tend to enhance relative preferences, whereas 

discarded options tend to decrease relative preferences (‘choice bias’; e.g., Cockburn et al., 

2014; Sharot et al., 2010, 2009). Here, the active Go and inactive NoGo responses might 

have influenced the affective valuation of the cues in a similar manner. This action-based 

affective valuation was clearly present in the carrier group, and was enhanced relative to 

the control group. Thus, the relative contribution of action-based and valence-based cue 

valuation were shifted in the carrier group, with an increased relative contribution of the 

associated action (or, ‘the actor’) and a decreased relative contribution of the cue valence 

(or, ‘the critic’). A shift in the relative contribution of the associated action and valence 

values would explain why the THD carriers expressed a shift in relative preferences only 

when the action- and valence-based preferences were incongruent. Although i) reduced 

reward expectations are consistent with current views of reduced dopamine function, and 

ii) unaffected action-based contribution would be consistent with the unaffected task 

performance in the learning phase, future research is needed to disentangle the absolute 

changes in the contribution of these complementary mechanisms.

Alternative to reflecting affected reward expectations, the attenuated relative 

preferences for Win and Avoid cues in the carrier group could reflect a disruption in value-

based learning, which also has been widely linked to dopamine function (Collins and Frank, 

2014; Frank et al., 2004; Montague et al., 2004; Schultz et al., 1997; Wise, 2004). If either the 

valuation or learning of reward and punishment outcomes is disrupted, that would explain 

why the THD carrier group indicated the Win cues as relatively less rewarding. Although 

one might have expected a disruption in value-based learning or decision-making based 

on current views of dopamine function, such a disruption seems unlikely given that the 

carrier group did not perform significantly differently from the control group during the 

learning phase. We cannot rule out compensation strategies (e.g., enhanced contribution 

of working memory or additional prefrontal functions), or enhanced engagement in the 

THD carriers (particularly given the personal relevance of the study), and that the carrier 

group thereby could compensate for a disruption in value-based learning, yet such a 

combined account is less parsimonious.

We have linked the group differences in relative preferences to changes in dopamine 

function above, yet it should be noted that the TH enzyme does not only affect dopamine 

synthesis, but affects catecholamine synthesis in general (Levitt et al., 1965), as dopamine 

is the precursor for noradrenaline (Kurian et al., 2011; Figure 1). Thus, even though these 

results are consistent with altered dopamine function, we cannot exclude the possibility 

that the other catecholamines contributed to the observed group differences.

Finally, given that the groups particularly differed in their relative preferences for the 

motivationally incongruent cues (i.e., NoGo-to-Win and Go-to-Avoid), one might wonder 

whether the carriers showed enhanced discounting for exerting control (cf. Cavanagh et 
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al., 2014). On the incongruent trials, instrumental requirements conflict with prepotent, 

Pavlovian response tendencies elicited by the cue valence, and this Pavlovian conflict 

is thought the require increased levels of control over behaviour (Cavanagh and Frank, 

2014; Swart et al., 2018) and to be inherently aversive (Cavanagh et al., 2014). Although 

the carriers indeed preferred the NoGo-to-Win cues less than the controls, they preferred 

the Go-to-Avoid cues more than the matched controls, which argues against enhanced 

discounting of conflict in the THD carrier group.

Conclusion

We set out to assess for the first time the cognitive consequences of carrying a pathogenic 

variant in the TH gene. We specifically assessed the impact of being of carrier of THD on the 

well-established motivational biases in action on the one hand and subjective valuation on 

the other. In both the THD carriers and matched controls, anticipated rewards and punishment 

elicited Go and NoGo responses respectively. While the groups did not significantly differ in this 

motivational biasing of Go responding, the groups strikingly differed in their relative valuation 

of the cues. The THD carrier group valued the NoGo-to-Win cues less than the matched control 

group, while preferring the Go-to-Avoid cues more. Our results suggest that motivational 

biases in action are unaffected in THD carriers, whereas subjective cue valuation is altered 

relative to matched controls, potentially due to catecholamine-dependent changes in reward 

expectations. This pilot study provides a first insight into the subtle cognitive changes in a 

highly unique and hitherto unstudied genetic population involving the catecholamine system. 
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Abstract

Catecholamines modulate the impact of motivational cues on action. Such motivational 

biases have been proposed to reflect cue-based, ‘Pavlovian’ effects. Here, we assess whether 

motivational biases may also arise from asymmetrical instrumental learning of active and 

passive responses following reward and punishment outcomes. We present a novel paradigm, 

allowing us to disentangle the impact of reward and punishment on instrumental learning 

from Pavlovian response biasing. Computational analyses showed that motivational biases 

reflect both Pavlovian and instrumental effects: reward and punishment cues promoted 

generalized (in)action in a Pavlovian manner, whereas outcomes enhanced instrumental (un)

learning of chosen actions. These cue- and outcome-based biases were altered independently 

by the catecholamine enhancer melthylphenidate. Methylphenidate’s effect varied across 

individuals with a putative proxy of baseline dopamine synthesis capacity, working memory 

span. Our study uncovers two distinct mechanisms by which motivation impacts behaviour, 

and helps refine current models of catecholaminergic modulation of motivated action.

eLife digest

When we see a threat, we tend to hold back. When we see a reward, we have a strong urge to 

approach. Most of the time, these hardwired tendencies – or biases – are the right thing to do. 

However, our behaviour is not all hardwired; we can also learn from our previous experiences. 

But might this learning be biased too? For example, we might be quicker to believe that an 

action led to a reward, because actions often do bring rewards. Conversely, we might be less 

likely to attribute a punishment to having held back, because holding back usually helps us to 

avoid punishments.

Swart et al. have now tested whether rewards and punishments influence our actions solely 

via hardwired behavioural tendencies, or whether they also bias our learning. That is, are we 

biased to learn that taking action earns us rewards, while holding back spares us punishments? 

Previous work has shown that chemical messengers in the brain called catecholamines help 

us to take action when we anticipate a reward. Swart et al. therefore also examined whether 

catecholamine levels contribute to any bias in learning.

One hundred young healthy adults twice performed a task in which they could earn 

rewards and avoid losses by taking or withholding action. By using a mathematical model to 

work out what influenced the choices made by the volunteers, Swart et al. found that rewards and 

punishments did indeed bias learning. Moreover, this learning bias became stronger when the 

volunteers took methylphenidate (also known as Ritalin), a drug that increases catecholamine 

levels and which is used to treat ADHD and narcolepsy. The volunteers varied markedly in how 

strongly methylphenidate affected their choices. This emphasises how important it is to account 

for differences between people when evaluating the effects of medication.
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Motivations are what get us going and keep us going. The findings of Swart et al. mean that 

we now have a better understanding of how motivations, such as desired rewards or unwanted 

punishments, influence our behaviour. A future challenge is to understand how we can overcome 

these motivations when they work against us, such as in addiction or obesity.

Introduction

Catecholamine (i.e. dopamine and noradrenaline) transmission has long been implicated in key 

aspects of adaptive behaviour, including learning, action, and motivation. Deficits in these aspects 

of adaptive behaviour are observed in a wide range of neuropsychiatric disorders, such as attention 

deficit hyperactivity disorder, Parkinson’s disease, and addiction (Dagher and Robbins, 2009; 

Prince, 2008; Skolnick, 2005), and many of those deficits can be treated with catecholaminergic 

drugs (Faraone and Buitelaar, 2010; Wigal et al., 2011). While overwhelming evidence implicates 

catecholamines in both motivated activation and motivated learning of behaviour (Bromberg-

Martin et al., 2010; Robbins and Everitt, 1996; Wise, 2004), their respective contributions are still 

highly debated. In this study, we dissect the contribution of catecholamines to motivational biases 

in behavioural activation and learning.

The neuromodulator dopamine has been linked particularly strongly to behavioural 

activation in the context of reward (Taylor and Robbins, 1986, 1984), putatively by amplifying 

the perceived benefits of action over their costs (Collins and Frank, 2014; Niv et al., 2007). This 

behavioural activation to reward-predicting cues is likely to be, at least partly, Pavlovian in nature, 

with the conditioned cues eliciting innately specified responses (Figure 1A). The Pavlovian nature 

of these motivational biases has been demonstrated using Pavlovian-instrumental transfer (PIT) 

paradigms (Estes, 1943; Estes and Skinner, 1941). In PIT, conditioned cues elicit innately specified 

responses that may potentiate (or interfere with) instrumental responding, e.g. appetitive cues 

promote active responding (appetitive PIT), whereas aversive cues increase behavioural inhibition 

(aversive PIT; Davis and Wright, 1979; Huys et al., 2011). Enhanced dopamine increases appetitive 

PIT (Wyvell and Berridge, 2000), while appetitive PIT is  lowered when striatal dopamine is reduced  

(Dickinson et al., 2000; Hebart and Gläscher, 2015; Lex and Hauber, 2008). Striatal dopamine has 

also been linked to controlling aversively motivated behaviour (Faure et al., 2008; Lloyd and 

Dayan, 2016). Together, these results show that appetitive cues promote activation and aversive 

cues promote inhibition in a Pavlovian manner, mediated by the dopamine system. 

While Pavlovian response biases can be helpful in reducing computational load by shaping 

our actions in a hardwired manner, they are inherently limited because of their general nature 

(Dayan et al., 2006). In order to select the best action in a specific environment, instrumental systems 

allow organisms to adaptively learn action-outcome contingencies, by assigning value to actions 

that in the past have led to good outcomes, while reducing value of actions that led to negative 

outcomes (Dickinson and Balleine, 1994; Rescorla and Wagner, 1972; Robbins and Everitt, 2007). 
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Pavlovian and instrumental learning are often presented as a dichotomy, whereby cue-based, 

Pavlovian effects are solely responsible for motivational biases, while adaptive ‘rational’ choice 

results from instrumental learning. For example, multiple recent studies showing that reward or 

punishment cues bias action, eliciting appetitive activation and/or aversive inhibition, have been 

interpreted specifically in terms of a Pavlovian response bias (for a review see Guitart-Masip et 

al., 2014a).

We hypothesised that these motivational biases of behavioural activation may also arise 

from asymmetrical, or biased, instrumental learning (Figure 1B), in addition to Pavlovian response 

biases. Such biases in learning, like response biases, may reflect predominant statistics of the 

environment. For example, we might be quicker to believe that an action led to a reward, because 

actions often cause rewards. However, we may not attribute a punishment to having held back, 

because holding back usually helps avoid a punishment. Such an instrumental learning bias may 

arise from a circuitry where reinforcers are more potent at driving learning following active ‘Go’ 

than inactive ‘NoGo’ actions. This means that Go responses (relative to NoGo responses) are easier 

to learn and unlearn following reward and punishment respectively. This instrumental learning 

bias would predict that Go responses that elicited a reward are more likely to be repeated (i.e. 

better learned) than NoGo responses that elicited a reward. Similarly, Go responses that elicited 

a punishment are relatively less likely to be repeated (i.e. better unlearned) than NoGo responses 

that elicited a punishment. These instrumental learning and Pavlovian response biasing accounts 

of motivated (in)action could not be dissociated in earlier studies (Cavanagh et al., 2013; Guitart-

Masip et al., 2014b, 2012), because they allowed for only a single Go response: With only one 

response option, general activation of action cannot be disentangled from facilitated learning 

of a specific response. In our proposed framework, motivational biases in behavioural (in)

activation are likely the result of a combination of Pavlovian response biasing plus an asymmetry 

in instrumental learning of Go and NoGo responses (Figure 1).

At the neurobiological level, this hypothesis arises from current theorizing about the 

mechanism of action of reinforcement-related changes in dopamine. Specifically, a potential 

substrate for this proposed learning asymmetry could be provided by the striatal dopamine 

system, which is notably involved in instrumental learning via modulation of synaptic plasticity 

(Collins and Frank, 2014 for review and models). In this framework, dopamine bursts elicited by 

better than expected outcomes reinforce the actions that led to these outcomes (Montague et al., 

2004; Schultz et al., 1998, 1997) via long-term potentiation (LTP) in the striatal direct ‘Go’ pathway 

(Frank et al., 2004). The temporal specificity of the phasic dopamine bursts allows for assigning 

credit to the most recent action, by potentiating the recently active striatal neurons. Due to the 

LTP in the ‘Go’ pathway, rewards may be more effective in reinforcing neurons coding for active 

Go responses than NoGo responses. Conversely, dopamine dips elicited by worse-than-expected 

outcomes (Matsumoto and Hikosaka, 2009; Tobler et al., 2005) lead to long-term depression (LTD) 

of the ‘Go’ pathway and LTP in the ‘NoGo’ pathway, making it less likely that the same cue would 
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elicit an active than inactive response next time. In short, the striatal system is biased to attribute 

rewards and punishments to active Go responses, which ecologically may be more commonly 

the cause of observed outcomes. The implication of this is that is easier to learn to take action 

based on reward, but easier to withhold making an action based on punishment.

A key additional prediction of this model is that prolonging the presence of dopamine, 

e.g. by blocking dopamine reuptake with methylphenidate, would lead to a spread of credit 

assignment (Figure 1C). Here, credit is assigned to striatal neurons that were recently active, due 

to recent actions that did not actually lead to the current reward and phasic dopamine burst 

(“spread of effect”; Thorndike, 1933). In this framework, the dopamine system can produce biased 

motivated behaviour due to i) direct Pavlovian biases (e.g. predicted rewards potentiate the Go 

pathway during action selection), and ii) disproportionate potentiation of instrumental learning 

of Go actions that (recently) led to reward. Put more simply, i) dopamine bursts prompted by 

reward-predicting cues can potentiate activation of the Go pathway, giving rise to the cue-based, 

Pavlovian activation, and ii) dopamine bursts prompted by reward outcomes can potentiate 

plasticity within the Go pathway, making rewards more effective in reinforcing Go responses 

than NoGo responses. 

In this study, we aimed to assess whether biases in instrumental learning contribute to the 

pharmaco-computational mechanisms subserving well-established reward/punishment biases 

of motivated (in)action. To dissociate biased instrumental learning from Pavlovian response 

biases, we developed a novel experimental paradigm including multiple active response options 

(Figure 2), and combined this task with a catecholamine challenge (catecholamine reuptake 

blocker methylphenidate - MPH). We tested the following hypotheses: i) cue-valence (appetitive 

vs. aversive cues) biases action in a Pavlovian manner, whereas outcome-valence (reward vs. 

punishment) biases instrumental learning of Go vs. NoGo actions; ii) blocking the catecholamine 

reuptake with MPH enhances the strength of the Pavlovian response bias as a result of prolonged 

dopamine release to reward cues; iii) MPH reduces the specificity of credit assignment to specific 

actions that elicited rewards, as the prolonged DA release to reward outcomes would spread 

credit to non-chosen active actions (Figure 1).

Finally, MPH prolongs the effects of catecholamine release by blocking the reuptake of 

catecholamines, without stimulating release or acting as a receptor (ant)agonist (e.g. Volkow et 

al., 2002). Accordingly, it is likely that the effect of MPH on catecholamine-dependent function is 

a function of dopamine synthesis capacity and release. Simply put, if there is no release, there is 

no reuptake to block. To assess these potential sources of individual variability in MPH effects, we 

took into account two measures that have been demonstrated with PET to relate to dopamine 

baseline function: working memory span for its relation to striatal dopamine synthesis capacity 

(Cools et al., 2008; Landau et al., 2009) and trait impulsivity for its relation to dopamine (auto)

receptor availability (Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et al., 2012), 

and collected a large sample (N=106) to expose individual differences.



50

CHAPTER 3

Figure 1. Distinct mechanisms by which motivational valence may bias behavioural activation.
(a) Pavlovian response bias: appetitive cues (green edge) elicit generalized behavioural activation (‘Go’), 
whereas aversive cues (red edge) elicit behavioural inhibition (‘NoGo’). This Pavlovian response bias is 
introduced in model M3a as the parameter π (c.f.  Figure 3). (b) Instrumental learning bias: rewarding 
outcomes (upper panel) facilitate learning of action (‘Go’, thick arrow) relative to inaction (‘NoGo’, thin 
arrow). Thus, learning effects at the individual trials t will result in a cumulative selective increase of the 
rewarded action on later trials tn. Punishment outcomes (lower panel) hamper the unlearning of inaction 
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(‘NoGo’, dashed arrow) relative to action (‘Go’, solid arrow), resulting in sustained inaction. Neutral outcomes 
are equally well associated with actions and inactions, and are not illustrated here. The instrumental 
learning bias is introduced as the parameter κ in model M3b (c.f. Figure 3). We assess whether these two 
mechanisms (i) act in parallel, and (ii) are modulated by the catecholamine system. To test the latter, we 
administered methylphenidate (MPH), which prolongs the effects of catecholamine release via blockade 
of the catecholamine receptors. We first assess whether MPH affects the strength of the Pavlovian response 
bias, introduced as the parameter πMPH in model M5a, and instrumental learning bias, implemented as the 
parameter κMPH-selective in model M5b (c.f. Figure 5). (c) We hypothesise that prolonged effects of dopamine 
release following reward outcomes will reduce (temporal) specificity, leading to spread of credit: Credit is 
assigned to other recent actions (thin arrow), in addition to the performed (and rewarded) Go response 
(thick arrow), resulting in additional learning of the alternative (not-performed) Go response. This MPH-
induced diffuse learning bias is implemented by the parameter κMPH-diffuse in model M5c (c.f. Figure 5).

Results

Healthy participants performed a motivational Go/NoGo learning task, in which cue valence 

(Win vs. Avoid cue) is orthogonalized to the instrumental response (Go vs. NoGo). During this 

task, subjects need to learn for each of 8 cues to make a Go or NoGo response, and by making 

the correct response subjects are rewarded for Win cues (green edge) and avoid punishment 

for the Avoid cues (red edge) in 80% of the time. Crucially, in contrast to task designs in previous 

studies (Guitart-Masip et al., 2014a), in this novel paradigm subjects could make either of two 

Go responses (press left vs. right) or withhold responding (NoGo; Figure 2A-D). Including two 

Go response options enabled us to tease apart general activation/inhibition related to the 

Pavlovian response bias and specific action learning related to the instrumental learning bias 

using computational models and behavioural analyses.

Motivational Valence affects (in)correct action
Subjects successfully learned this difficult task, in which they needed to identify the correct 

response out of 3 options (Go-left/Go-right/NoGo) for 8 different cues, as evidenced by increased 

Go responding to cues indicating the need to Go vs. NoGo (Required Action: Χ2
1=624.3; p<.001; 

Figure 2E,F). In other words, subjects were able to adjust Go responding to the required action. 

As expected, cue valence also influenced Go responding (Valence: Χ2
1=40.0; p<.001), reflecting a 

motivational bias in responding. Overall subjects made more Go responses for Win than Avoid 

cues. The effect of cue valence was highly significant for both Go and NoGo cues (Go cues: Χ2
1=37.5, 

p<.001; NoGo cues: Χ2
1=13.3, p<.001), though marginally stronger for the Go cues (Required Action 

x Valence: Χ2
1=3.1; p=.076). Because each Go cue was associated with only one correct Go response, 

we confirmed that this motivational bias was present for both correct and incorrect Go responses. 

Subjects made more Go responses to Win than avoid cues for both correct (Valence: Χ2
1=26.1, 

p<.001) and incorrect (Valence: Χ2
1=25.6, p<.001) Go responses. Next, we tested the hypothesis 

that this motivational bias arose from a combination of a Pavlovian response bias and biased 

instrumental learning (Figure 1A-B).
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Figure 2. Motivational Go/NoGo learning task and performance.
(a) On each trial, a Win or Avoid cue appears on screen. Subjects can respond during cue presentation. 
Response-dependent feedback follows. (b) In total eight cues are presented for which the correct 
response needs to be learned. (c) Each cue has only one correct response (Go-left, Go-right, or NoGo), 
which subjects can learn from the feedback. (d) Feedback is probabilistic. Correct responses are followed 
by reward (Win cues) or a neutral outcome (Avoid cues) in 80% of the time and by a neutral outcome (Win 
cues) or punishment (Avoid cues) otherwise. For incorrect responses, these probabilities are reversed. (e) 
Trial-by-trial proportion of Go responses (±SEM) for Go cues (solid lines) and NoGo cues (dashed lines), 
collapsed over Placebo and MPH. Left: All cue types. From the first trial onwards, subjects made more 
Go responses to Win vs. Avoid cues (i.e. green lines are above red lines), reflecting the motivational bias. 
Additionally, subjects clearly learn whether to make a Go response or not (proportion of Go responses 
increases for Go cues and decreases for NoGo cues). Right: Go cues only. For the Go cues, a Go response 
could be either correct or incorrect. The motivational bias is present in both correct and incorrect Go 
responses, but incorrect Go responses are unlearnt. Note that the total p(Go) in this plot sums up to the 
solid lines in the left plot. (f) Mean (±SED) proportion Go responses. Proportion Go responses is higher for 



53

CATECHOLAMINERGIC MECHANISMS OF MOTIVATED ACTION

3
Chapter

Go vs. NoGo cues, indicative of task learning. Additionally, subjects made more correct and incorrect Go 
responses to Win vs. Avoid cues.
Figure supplement:

•	 Figure 2 – figure supplement 1 (p.73). Individual traces (black lines) and group average (coloured lines)  
	 of correct and incorrect Go responses using a sliding average of 5 trials.

Computational modelling: disentangling Pavlovian response bias and instrumental 
learning bias
We used a computational modelling approach to quantify latent processes that we 

hypothesised to underlie the behavioural performance. Specifically, our first aim was 

to disentangle the contribution of Pavlovian response biases and instrumental learning 

biases to the observed valence effect in behaviour. To this end we extended a simple 

reinforcement learning model using hierarchical Bayesian parameter estimation. We 

developed five nested base models (M1, M2, M3a, M3b, M4) with increasing complexity to 

assess whether additional parameters explained the observed data better, while penalizing 

for increasing complexity.

In all models, the probability of each response is estimated based on computed 

action weights. In the simplest model (M1) the action weights are fully determined by the 

learned action values (Q-values). Action values are updated with the prediction error, i.e. 

the deviation of the observed outcome from the expected outcome (standard “delta-rule” 

learning; Rescorla and Wagner, 1972). M1 contains two free parameters: a learning rate (ε) 

scaling the impact of the prediction-error, and feedback sensitivity (ρ) scaling the outcome 

value. Next, to allow for a non-selective bias in Go responses unrelated to valence, a go 

bias parameter (b) is added to the action weights of Go responses in M2. This parameter 

simply captures how likely people are to make a ‘Go’ response overall.

In this task, we explicitly instructed the cue valence, by colouring the edge of each 

cue, where green signalled that subjects could win a reward, while red signalled they had to 

avoid a punishment (Figure 2A). As a consequence, we observed an effect of the instructed 

cue valence on Go responses already from the first trial onwards (Figure 2E), implying a 

motivational bias before learning could occur, which is therefore likely Pavlovian in 

nature. To assess this Pavlovian response bias, cue values are added to the action weights 

in M3a. In this model positive (negative) Pavlovian values increase (decrease) the action 

weight of Go responses, where π scales the weight of the Pavlovian values (Cavanagh et 

al., 2013; Guitart-Masip et al., 2014b, 2012). Thus, the Pavlovian bias parameter increases 

the probability of all Go responses for Win cues and decreases the probability of all Go 

responses for Avoid cues.

In M3b we assessed whether a motivational learning bias affects behaviour. 

Specifically, we included an instrumental learning bias parameter (κ), to assess whether 

reward is more effective in reinforcing Go responses than NoGo responses, whereas 
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punishment is less effective in unlearning NoGo responses than Go responses. This biased 

learning parameter indexes the degree to which the specific Go response that elicited a 

reward would be relatively more likely to be repeated in subsequent trials, resulting in 

increased instrumental learning of Go responses for reward. Note that earlier studies used 

only a single Go response and could thus not dissociate this specific learning vs. Pavlovian 

bias account. In addition to this effect on learning from rewards, κ indexes the degree to 

which punishment is biased to potentiate activity in the NoGo versus Go pathway, thus 

biasing unlearning to be more effective after Go responses than after NoGo responses, 

(i.e., making punishment-based avoidance learning of NoGo responses more difficult than 

punishment-based avoidance learning of Go responses; Figure 1B). Because the Pavlovian 

and instrumental learning bias might explain similar variance in the data, we tested 

model M4, where we included both π and κ to test whether there was evidence for the 

independent presence of both the instrumental learning bias and the Pavlovian response 

bias.

Stepwise addition of the go bias (Appendix 5), Pavlovian response bias and instrumental 

learning bias parameter improved model fit, as quantified by Watanabe-Akaike Information 

Criteria (WAIC; Figure 3; Table 1). The Pavlovian bias parameter estimates (π) of the winning 

model M4 were positive across the group (96.4% of posterior distribution > 0). The Pavlovian 

bias estimates were modest across the group (Figure 3; Table 1), and showed strong individual 

variability (Figure 3 – Figure Supplement 2; Figure 3 – Figure Supplement 3). This strong inter-

individual variability is consistent with previous reports, e.g. Cavanagh et al., (2013), who show 

that differences in the strength of the Pavlovian bias is inversely predicted by EEG mid-frontal 

theta activity during incongruent relative to congruent cues, putatively reflecting the ability 

to suppress this bias on incongruent trials. The further improvement of model fit due to the 

instrumental learning bias parameter (M3a vs. M4) provides clear evidence for the contribution 

of biased action learning on top of the Pavlovian response bias described in previous studies. 

The biased instrumental learning parameter estimates were also positive across the group 

(100% of posterior distribution > 0). In other words, in the winning model, the motivational 

bias, as reflected by an increase in Go responses to Win relative to Avoid cues, is explained by 

the presence of both a Pavlovian response bias and biased instrumental learning. Figure 3 and 

accompanying Figure supplements illustrate the model predictions and parameter estimates.
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Figure 3. Model evidence and parameter inference of base models.
(a) Model evidence, relative to simplest model M1, clearly favours M4. The simplest model M1 contains 
a feedback sensitivity (ρ) and learning rate (ε) parameter. Stepwise addition of the go bias (b), Pavlovian 
bias (π; Figure 1A), and instrumental learning bias (κ; Figure 1B) parameter improves model fit, quantified 
by WAIC (estimated log model evidence). Lower (i.e. more negative) WAIC indicates better model fit. (b) 
Temporal dynamics of the correlation between the motivational bias parameters (M4) and the predicted 
motivational bias, i.e. probability to make a Go response to Win relative to Avoid cues. The impact of 
the Pavlovian bias (π) on choice decreases over time (although, importantly, the parameter itself remains 
constant). This is because the instrumental values of the actions are learnt and thus will increasingly 
diverge. As a result, π is less and less ‘able’ to tip the balance in favour of the responses in direction of the 
motivational bias (i.e. it can no longer overcome the difference in instrumental action values). In contrast, 
the impact of κ on choice increases over time, reflecting the cumulative impact of biased learning 
(also Figure 3—figure supplement 2). (c) Posterior densities of the winning base model M4. Appendix 5 
shows posterior densities for all models. (d) One-step-ahead predictions and posterior predictive model 
simulations of winning base model M4 (coloured lines), to assess whether the winning model captures 
the behavioural data (grey lines). Both absolute model fit methods use the fitted parameters to compute 
the choice probabilities according to the model. The one-step-ahead predictions compute probabilities 
based on the history of each subject’s actual choices and outcomes, whereas the simulation method 
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generates new choices and outcomes based on the response probabilities (see Materials and methods for 
details). Both methods capture the key features of the data, i.e. responses are learnt (more ‘Go’ responding 
for ‘Go’ cues relative to ‘NoGo’ cues) and a motivational bias (more Go responding for Win relative to Avoid 
cues). We note that the model somewhat underestimates the initial Pavlovian bias (i.e. difference in Go 
responding between Win and Avoid trials is, particularly trial 1–2), while it overestimates the Pavlovian 
bias on later trials. This is likely the result from the fact that while the modelled Pavlovian bias parameter 
(π) is constant over time, the impact of the Pavlovian stimulus values weakens over time, as the subjects’ 
confidence in the instrumental action values increases. Interestingly, notwithstanding the constancy of 
the Pavlovian bias parameter, we do capture some of these dynamics as Figure 3B shows that the impact 
of the Pavlovian bias on choice decreases over time.
Figure supplements:

•	 Figure 3 – figure supplement 1 (p.73). Subject traces of model M4 (green/red) overlaid on observed  
	 behaviour (black).
•	 Figure 3 – figure supplement 2 (p.74). Illustration of the behavioural effects associated with the  
	 Pavlovian bias and instrumental learning bias parameters.
•	 Figure 3 – figure supplement 3 (p.74). M4 subject-level parameters in model spac  
	 (i.e. untransformed).

MPH enhances effect of cue valence proportional to working memory span
Next, we asked whether acute administration of MPH altered the motivational bias. As noted 

above, the effects of dopaminergic drugs often depend on baseline dopamine function. We 

therefore used two neuropsychological measures that have been shown to predict baseline 

dopamine function using PET: working memory span, predictive of baseline dopamine 

synthesis capacity (Cools et al., 2008; Landau et al., 2009), and trait impulsivity, predictive of 

D2 autoreceptor availability (Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et 

al., 2012). Importantly, both working memory span and trait impulsivity predict dopaminergic 

drugs effects on various cognitive functions (Clatworthy et al., 2009; Cools et al., 2009, 2007; 

Frank and O’Reilly, 2006; Gibbs and D’Esposito, 2005; Kimberg et al., 1997; van der Schaaf et 

al., 2013).

MPH enhanced the effect of cue valence on Go responding proportional to working 

memory span (Valence x Drug x Listening Span: Χ2
1=5.9; p=.016; Figure 4B), in the absence 

of a Valence x Drug effect across the group (Valence x Drug: Χ2
1=1.5; p=.221; Figure 4A). While 

high-span subjects showed a drug-induced increase in motivational bias (MPH versus placebo 

increased Go responding to Win vs. Avoid cues), low-span subjects showed a drug-induced 

decrease in motivational bias. This span-dependent bias emerged under MPH (Χ2
1=4.6, p=.032), 

and was not significant under placebo (Χ2
1=.9, p=.335; Figure 4 – Figure supplement 1).

A break-down of this effect into correct and incorrect responses revealed that it was 

driven by incorrect Go responses (Valence x Drug x Listening Span: Χ2
1=11.9, p<.001; Figure 

4C). MPH did not significantly affect the correct Go responses (Valence x Drug x Listening Span: 

Χ2
1=2.0, p=.152). In other words, higher span subjects were more likely to make Go responses to 

Win cues under MPH, but this Go response was more likely to be incorrect. We reasoned that an 

enhanced learning bias would manifest primarily in increased correct Go responses to Win cues 

(i.e. the correct responses are better learned), while an enhanced Pavlovian bias or diffusion of 
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credit assignment would manifest in increased correct and incorrect Go responses to Win cues 

(due to overall action invigoration and potentiation respectively). Thus, we expected that the 

altered valence effect on incorrect Go responses under MPH can best be attributed to MPH 

alteration of Pavlovian response bias or diffusion of credit assignment, which we formally test 

using computational modelling (see below).

In contrast to listening span, trait impulsivity did not significantly predict the effect of 

MPH on the motivational bias (all p>.05; see Appendix 3 for an overview of the mixed model 

effects). We confirmed that the MPH effects were not explained by session effects, i.e. whether 

MPH was received on the first or second testing day (X2
2=2.1, p=.349), nor did the factor Testing 

day improve model fit (X2
1=2.0, p=.162). Finally, we confirmed that including nuisance variables 

Gender and NLV scores (measuring for verbal intelligence), did not improve model fit either 

(X2
2=0.4, p=.815).

Figure 4. MPH-induced changes in motivational bias (i.e. proportion of Go responses to Win relative to 
Avoid cues).
(a) Mean (±SED) proportion Go responses under MPH relative to Placebo. MPH did not significantly alter 
the motivational bias across the group (p=0.22; ns indicates p>0.05). (b) MPH increased the motivational 
bias in high span subjects, yet decreased it in low span subjects (R=0.21; p=0.016). (c) MPH altered the 
motivational bias particularly for  incorrect  Go proportional to working memory span (incorrect Go: 
p<0.001; correct Go: p=0.152).
Figure supplement:

•	 Figure 4 – figure supplement 1 (p.75). Simple effects of MPH-induced changes in motivational 
bias.

Computational modelling: dissociable effects of MPH on Pavlovian response bias and biased 
instrumental learning
Continuing our modelling approach, we next assessed whether the MPH-induced motivational 

bias could be attributed to an altered Pavlovian response bias and/or instrumental learning 

bias. To this end we extended the winning base model M4 into competing models. In M5a we 

included an MPH-induced Pavlovian bias parameter (πMPH), to assess whether MPH altered the 
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Pavlovian response bias. Here πMPH alters the individual’s Pavlovian bias parameter under MPH. 

In M5b we included an MPH-induced instrumental learning bias (κMPH-selective). Thus, M5b tests 

whether MPH affects the strength of the instrumental learning bias in individuals. We further 

tested whether MPH might make the learning bias more diffuse, because of its mechanisms of 

action. Because MPH blocks reuptake, it prolongs dopamine release, such that reinforcement 

and synaptic potentiation might not be attributed only to the temporally coincident neurons 

that code for the recently selected action, but could be spread to other actions (diffuse 

learning). To test this hypothesis, M5c contains a MPH-induced diffuse learning bias (κMPH-diffuse), 

where κMPH-diffuse is a learning rate that alters the value of all Go responses following a reward, 

under MPH (Figure 1C) by scaling the prediction error following all rewarded Go responses. 

Model fit improved markedly when extending the winning base model M4 with the 

MPH-induced Pavlovian bias parameter πMPH (M5a; Figure 5; Table 2). Extending M4 with 

the MPH-induced selective learning bias parameter κMPH-selective (M5b) only slightly increased 

model fit. Conversely, the MPH-induced diffuse learning bias parameter κMPH-diffuse (M5c) also 

strongly improved model fit relative to base model M4. This observation is in line with our 

earlier prediction that the MPH effects are predominantly driven by changes in the proportion 

of incorrect Go responses. Confirming the model comparison results, the MPH modulation of 

Pavlovian bias and diffuse learning parameters both covaried with Listening Span (πMPH: R=.25, 

p=.013; κMPH-diffuse: R=.28, p=.006), while the MPH selective learning bias did not (κMPH-selective: R=-

.01, p=.9). In other words, κMPH-selective did not explain our effect of interest and improved model 

fit relatively weakly.

To assess whether πMPH and κMPH-diffuse explained unique Listening Span-dependent effects 

of MPH (i.e. whether there was evidence for both of these effects), we constructed a composite 

model (M6) containing both effects. Model comparison showed that indeed this composite 

model explained the data best (Figure 5). In this model, both parameters again significantly 

varied proportional to Listening Span (πMPH: R=.24, p=.020; κMPH-diffuse: R=.22, p=.032; Figure 5).

Taken together, these modelling results attribute the MPH-induced motivational bias 

partly to an altered Pavlovian response bias (πMPH), and partly to a reward-driven diffusion of 

credit during instrumental learning (κMPH-diffuse). In other words, MPH i) alters the impact of cue 

valence on action, which is present and persists from the first trial onward, and ii) alters the 

impact of rewarding outcomes on the learning of actions, which fully depends on and evolves 

with experience. Following a reward, the effect of κMPH-diffuse is to increase the value of incorrect 

Go responses in addition to the correct Go response.
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Figure 5. Model evidence and parameter inference of extended MPH models.
(a) Model evidence (WAIC) relative to winning base model M4. We tested whether MPH alters the strength 
of the Pavlovian response bias (πMPH; M5a), the instrumental learning bias (κMPH-selective; M5b), or has a diffuse 
effect on the learning bias (κMPH-diffuse; M5c; Figure 1C). Model selection favoured the composite model M6, 
including the πMPH and κMPH-diffuse parameters. (b) Posterior densities of the top-level parameters of M6. (c) 
Subject-level estimates of MPH-induced Pavlovian bias parameter (upper) and the MPH-induced diffuse 
learning bias parameter (lower; logistic scale) correlated significantly with Listening Span. (d) One-step-
ahead model predictions and posterior predictive model simulations of M6 using subject-level parameter 
estimates. The model predictions and simulations echo the observed data, i.e. that the motivational bias 
correlates positively with working memory span (Figure 4B), confirming the winning model M6 captures 
the MPH-induced increase in Go responses to Win vs. Avoid cues.
Figure supplements:

•	 Figure 5 – figure supplement 1 (p.75). Illustration of the behavioural effects of MPH related to the  
	 Pavlovian bias and diffuse learning bias parameters.
•	 Figure 5 – figure supplement 2 (p.76). M6 subject-level parameters in model space  
	 (i.e. untransformed).
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Extended MPH models

M5a M5b M5c M6

WAIC 66383 66883 66595 66069

ρ 31.2 [14.7 53.6] 31.6 [15.6 57.0] 55.8 [19.6 104.8] 51.9 [20.6 98.7]

ε0 0.022 [0.010 0.067] 0.021 [0.011 0.061] 0.011 [0.006 0.051] 0.012 [0.006 0.055]

b −0.04 [−0.33 0.18] −0.05 [−0.34] −0.10 [−0.37 0.13] −0.14 [−0.42 0.10]

π 0.27 [−0.50. 71] 0.15 [−0.28. 70] 0.05 [−0.46. 61] 0.27 [−0.47. 74]

π (MPH) 0.20 [−0.38. 71] −0.05 [−0.70. 50]

ε rewarded Go 0.037 [.017. 116] 0.030 [.018. 103] 0.018 [.009. 082] 0.019 [.009. 085]

ε rewarded Go (MPH) 0.031 [.016. 104]

ε punished NoGo 0.009 [.004. 030] 0.009 [.003. 021] 0.004 [.002. 013] 0.005 [.002. 017]

ε punished NoGo (MPH) 0.009 [.004. 030] 0.008 [.002. 021] 0.004 [.002. 013] 0.005 [.002. 017]

ε diffuse (MPH) 0.002 [.002. 004] 0.003 [.002. 004]

Table 2. MPH models. Median [25–75 percentile] of subject-level parameter estimates in model space. 
Absolute WAIC is reported as the estimate of model evidence, where a smaller WAIC indicates higher 
evidence. Biased instrumental learning rate for rewarded Go and punished NoGo responses as computed 
by ε0±κ under placebo and by ε0±(κ+κMPH) under MPH. (MPH) indicates the value of that parameter under 
MPH.

Finally, we tested whether our best fitting model was sufficient to reproduce the key 

features of the data. This is important because model selection only provides relative, but 

not absolute evidence for the winning model (e.g., Nassar and Frank, 2016). We used two 

approaches to compute the post hoc absolute model fit, namely data simulation and “one-

step-ahead” model predictions. In the simulation method, the first choice is simulated 

based on the initial values; the corresponding outcome used for learning; the next choice 

is simulated based on the updated, learned values; and so on. Thus, this simulation 

method ignores any subject-specific sequential/history effects to determine the current 

choice probability. Therefore, this can result in choice/outcome sequences that diverge 

completely from the subjects’ actual experiences. Violating the subject-specific choice 

and outcome history will change the learning effects, making this method less robust in 

generating the exact learning effects compared to experience-independent effects. We 

therefore included a second absolute model fit method that does take into account the 

subjects’ choice and outcome histories: the post-hoc absolute fit method (also known as 

‘one-step-ahead prediction’; Pederson et al., 2016; Steingroever and Wagenmakers, 2014). 

Here, the initial choice probabilities are determined based on the initial values. For each 

subsequent trial, the choice probabilities are determined based on the learned values 
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using the actual (subject’s) choices and outcomes on all preceding trials. We used both 

methods as the strongest test providing converging evidence that the models could 

capture the observed results.

Using both absolute model fit methods, we simulated choices for each individual, using 

model M6 with each individual’s parameter estimates. Both methods confirmed that M6 can 

capture the observed effects, replicating the Listening Span dependent effect of MPH on 

choice, where MPH increased Go responses to Win vs. Avoid cues more in higher span subjects 

(simulations: R=.27, p=.008; one-step-ahead: R=.20, p=.050; Figure 5). These simulations echo 

the results reported above, demonstrating the MPH-induced Pavlovian bias parameter πMPH and 

diffuse learning bias κMPH-diffuse are sufficient to both explain and predict the span-dependent 

MPH-induced increase in Go responses to Win vs. Avoid cues. Figure 5 and accompanying 

Figure supplements illustrate the model predictions and parameter estimates.

Discussion

Motivational biases of behaviour are well established: Reward biases towards action, 

punishment towards inaction. In this study, we had two goals. First, we aimed to assess 

whether these motivational biases arise from biases in instrumental learning in addition to 

Pavlovian response biases. Second, given the strong link between catecholamine transmission 

and motivated action, we aimed to assess effect of catecholaminergic manipulation on these 

biases. To this end, a large sample of participants (N=106) performed a novel motivational Go/

NoGo learning task twice, once under a catecholamine challenge (methylphenidate - MPH) 

and once on placebo. Based on previous literature of dopaminergic drug effects (Cools & 

D’Esposito, 2011, and Frank & Fossella, 2011 for reviews), we hypothesized that MPH effects 

on motivated action would covary with measures scaling with baseline dopamine function, 

namely working memory span (Cools et al., 2008) and trait impulsivity (Buckholtz et al., 2010). 

Our findings are threefold: First, cue valence elicits behavioural activation in a Pavlovian 

manner, whereas outcome valence biases the learning of action vs. inhibition (Figure1A,B). 

Second, MPH modulates Pavlovian biasing, while also altering the reward-driven diffusion 

of credit assignment during instrumental learning. Third, the direction of the effect of MPH 

covaries with individual differences in working memory span, but not trait impulsivity.

Dissociable effects of cue and outcome valence on behavioural activation and instrumental 
learning
Cue valence affected activation versus inhibition of behaviour, consistent with previous reports 

(Geurts et al., 2013; Guitart-Masip et al., 2012). Even though cue valence was orthogonal to 

what subjects should be doing, subjects made more Go responses when pursuing reward, 

and fewer Go responses when trying to avoid punishment. We and others have previously 
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suggested that this motivational asymmetry in behavioural activation entails Pavlovian control 

over instrumental behaviour (Cavanagh et al., 2013; Geurts et al., 2013; Huys et al., 2011). Here 

we challenge this initial idea, and argue that motivational valence may also bias instrumental 

learning. To disentangle the hypothesised contribution of a Pavlovian response bias from 

biased instrumental learning, we extended existing paradigms by incorporating multiple 

Go response options. For the cues requiring active responses, only one response option was 

considered correct, enabling us to disentangle general activation from specific action learning. 

For cues where subjects had to activate responding (‘Go’ cues), they increased both correct and 

incorrect Go responses when pursuing reward compared with when avoiding punishment. 

Thus, the increased activation towards reward was in part beneficial, and in part detrimental.

We used computational models to formalise our hypothesis regarding a dissociable 

contribution of Pavlovian activation and biased instrumental learning. We then fitted 

competing models to the subjects’ choices, and compared the performance of all models. We 

demonstrate that cue valence shapes behavioural activation/inhibition in a Pavlovian manner, 

and additionally that outcome valence biases instrumental learning of activation/inhibition: 

reward enhances the learning of specific active actions, and punishment suppresses the 

unlearning of inactions. In short, we are quicker to believe that an action led to a reward, but 

reluctant to attribute a punishment to having held back.

Current views of striatal dopamine function (Collins and Frank, 2015b, 2014, Frank, 2006, 

2005; Lloyd and Dayan, 2016) suggest that the striatal architecture is well suited to implement 

the Pavlovian asymmetry in behavioural activation. Appetitive (aversive) conditioned cues 

elicit peaks (dips) in mesolimbic dopamine release in the striatum (Cohen et al., 2012; Day 

et al., 2007; Matsumoto and Hikosaka, 2009; Tobler et al., 2005). Increased striatal dopamine 

levels activate the direct D1 (“Go”) pathway (Hernandez-Lopez et al., 1997), which promotes 

behavioural activation (DeLong and Wichmann, 2007; Mink and Thach, 1991), whereas 

decreased striatal dopamine levels activate the indirect D2 (“NoGo”) pathway (Hernandez-

Lopez et al., 2000), promoting behavioural inhibition. In striatal dopamine models, increased 

dopamine biases action selection to be driven more by the potential rewards of alternative 

actions encoded in D1 neurons and less by the costs encoded in D2 neurons (Collins and Frank, 

2014; see also recent optogenetic experiment supporting this notion; Zalocusky et al., 2016), 

but this can also be manifest in terms of Pavlovian biases. Taken together, the striatal (in)direct 

pathways provide a neural mechanism for implementing Pavlovian activation to appetitive vs. 

aversive cues.

In parallel with our behavioural findings, the same striatal pathways may also generate 

the asymmetry in action learning. Here, dopamine bursts elicited by reward prediction 

errors (Montague et al., 2004; Schultz et al., 1998, 1997) during the outcome, enhance long-

term potentiation (LTP) of the corticostriatal synapses associated with the just-performed 

response (Frank et al., 2004). Importantly, enhancing LTP in the “Go” pathway should 
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promote learning of active responses, relative to learning the inhibition of actions. Recent 

experiments show temporally and spatially selective enhancement of corticostriatal spines 

given glutamatergic input (putatively representing the selected action) and followed closely 

in time by dopaminergic bursts (Yagishita et al., 2014). Thus, prolonged release of DA (e.g. after 

DAT blockade) might reduce this selectivity, and diffuse the specificity of credit assignment. 

Conversely, striatal dopamine dips following negative prediction errors can drive avoidance 

by promoting long-term depression (LTD) in the “Go” pathway and LTP in the “NoGo” pathway 

(Beeler et al., 2012; Frank, 2005; Shen et al., 2008). Indeed, transient optogenetic inhibition of 

DA induces behavioural avoidance of recently selected actions (Danjo et al., 2014; Hamid et al., 

2015), an effect that depends on D2 receptors (Danjo et al., 2014). D2 neurons are excited in 

response to losses (Zalocusky et al., 2016); their activation during losses induces subsequent 

avoidance learning (Kravitz et al., 2012; Zalocusky et al., 2016), and their disruption prevents 

avoidance learning (Hikida et al., 2010). While LTP in the NoGo pathway would be beneficial 

for unlearning to perform actions, LTP in the NoGo pathway would be detrimental in case of 

unlearning to make NoGo responses (i.e. attributing a punishment to a NoGo response). To 

summarize, the dopamine peaks following positive reinforcement can enhance learning of 

actions by enhancing LTP in the striatal “Go” pathway. Conversely, the dopamine dips following 

negative outcomes can disrupt learning to initiate responses by increasing LTD in the “Go” 

pathway and LTP in the NoGo pathway.

Methylphenidate modulates Pavlovian activation and spreads credit assignment of 
rewarded actions
Blocking the reuptake of catecholamines with MPH altered the extent to which subjects were 

influenced by the cue and outcome valence. This effect of MPH was highly variable between 

individuals, and depended on working memory span. In high relative to low span subjects, 

MPH enhanced the influence of valence, such that subjects made even more active responses 

when pursuing reward and displayed more inhibition when avoiding punishment. This effect 

was driven particularly by changes in the proportion of incorrect Go responses that subjects 

made. Formal modelling showed that this effect was due to MPH affecting both generalized 

Pavlovian activation and a diffusion of credit assignment. Specifically, MPH induced a spread of 

credit assignment following rewarded active responses, rather than magnifying the selective 

instrumental learning bias.

We argue that both of these effects can be understood as reflecting prolonged 

catecholamine presence in the synaptic cleft with MPH. Blocking catecholamine reuptake 

with MPH extends the duration of dopamine presence in the synaptic cleft (Dreyer and 

Hounsgaard, 2012). This prolonged dopamine presence (i.e. reduced temporal specificity) 

would be less selective in potentiating the actions that were selected immediately prior to 

rewards (e.g. Yagishita et al., 2014). This would reduce credit assignment of specific active 
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actions, but still bias reinforcement of actions more generally (e.g. Collins and Frank, 2015; 

Syed et al., 2015). This account explains why MPH modulates the strength of the Pavlovian 

activation (which is inherently global) but not of the specific instrumental learning bias (which 

is inherently selective). Our results indeed provided evidence for this diffusing effect of MPH 

on the instrumental learning bias, such that reward potentiates actions globally. The data were 

best explained by a combination of this diffuse instrumental learning and Pavlovian response 

bias modulation. Thus, on the one hand MPH modulated the impact of the cue valence on 

behavioural activation, which surfaces already before any learning has taken place. On the 

other hand, MPH spread credit assignment following rewarded responses to all Go responses, 

which is an experience-dependent effect.

Our results are highly consistent with those predicted from current models of dopamine 

in the basal ganglia, suggesting that the effects of MPH are due to modulation of striatal 

dopamine. Of course, the present study does not allow us to exclude the possibility that 

(part of ) the effects were mediated by extra-striatal, e.g. prefrontal regions (Spencer et al., 

2015), or by the noradrenaline system (Arnsten and Dudley, 2005). Future studies are needed 

to investigate directly the site of the presently observed effects of MPH, e.g. with fMRI, and 

dopamine dependence and selectivity, e.g. with selective dopamine antagonists.

MPH effects predicted by individual differences in working memory span
Individuals vary strongly in the extent to which MPH increases extracellular dopamine (Volkow 

et al., 2002). We therefore anticipated that the effect of MPH would covary with measures 

relating to baseline dopamine function. We assessed whether MPH effects were predicted by 

(i) working memory span, given its known relation to dopamine synthesis capacity (Cools et al., 

2008; Landau et al., 2009), and (ii) trait impulsivity, for its known relation to D2 (auto)receptor 

availability (Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et al., 2012). MPH 

affected choice behaviour proportional to working memory span, but not trait impulsivity. 

Subjects with higher working memory span, linked to higher striatal synthesis capacity, 

showed a relative increase in both Pavlovian response bias and spread of credit assignment 

under MPH. This finding that transporter blockade has stronger effects in those individuals 

with putatively higher baseline dopamine is in line with the observation that MPH increases 

dopamine levels more in individuals with higher dopamine cell activity (van der Schaaf et al., 

2013; Volkow et al., 2002). Indeed, baseline dopamine cell activity is a better predictor of effects 

of MPH than either D2 auto-receptor availability or DAT occupancy under MPH (Volkow et al., 

2002). Together this may explain why the observed MPH effects covary with working memory 

span but not trait impulsivity.

The finding that drug effects depend on working memory is highly consistent with the 

hypothesis that they reflect modulation of striatal dopamine (c.f. Frank and Fossella, 2011). 

However, we need to be cautious in our interpretation. First, both striatal and prefrontal 
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dopamine are known to contribute to working memory performance (updating and 

maintenance respectively; e.g. Cools and D’Esposito, 2011). The Listening Span task does not 

dissociate between working memory updating and maintenance, and thus a contribution 

of modulation of prefrontal dopamine cannot be excluded. Another possibility raised by the 

finding that drug effects depend on span, is that they reflect modulation of working memory 

itself, rather than reflecting dependence on baseline dopamine synthesis capacity. However, 

we argue that this is unlikely, because there was no significant effect of baseline working 

memory on motivational bias under placebo conditions. Rather, this relationship was induced 

by MPH. For future studies, it would be of interest to also include other measures related to 

baseline dopamine levels, such as eyeblink rates. More broadly, further research is required to 

identify the optimal combination of the various proxy measures of individual variability in the 

dopamine system in order to account for the large inter-individual variability in dopaminergic 

drug response. This is one of the major aims of our ongoing work.

Across subjects, MPH increased subjective experiences of positive affect and alertness, 

and decreased calmness (Appendix 2). In contrast to the MPH-induced Pavlovian response 

bias and diffuse learning bias, these non-specific mood changes did not covary with working 

memory span. In other words, the MPH-induced mood changes are orthogonal to our effect 

of interest. Therefore, the MPH effect on Pavlovian activation and biased instrumental learning 

cannot be attributed to MPH-induced changes in mood.

Conclusion
This study elucidates two distinct mechanisms by which motivational valence can bias 

behaviour. Cue valence promotes activation/inhibition in a Pavlovian manner, whereas 

outcome valence affects action/inhibition learning. Blocking the reuptake of catecholamines 

with methylphenidate altered the Pavlovian response bias, and had a diffuse, rather than 

selective, effect on biased learning. The effect of methylphenidate on the Pavlovian bias and 

biased learning was predicted by working memory span, such that methylphenidate enhanced 

Pavlovian activation and biased learning proportional to working memory span. These results 

help bridge the study of motivational biasing of action and instrumental learning, and help 

refine current models of catecholamines in motivated action.

The present observations suggest that we need to add a new dimension to the suggested 

dichotomy of the role of dopamine in learning versus performance. Our study brings together 

two literatures that emphasise the role of (midbrain) dopamine in reward (prediction-error) 

based learning on the one hand (Collins and Frank, 2014; Frank et al., 2004; Schultz et al., 1997), 

and motivation-driven performance and behavioural activation on the other (Beierholm et al., 

2013; Berridge, 2007; Robbins and Everitt, 2007; Shiner et al., 2012; Smittenaar et al., 2012). 

Our results suggest that these two interact, resulting in biased learning of action-reward and 

inaction-punishment links, putatively via the same striatal mechanism that drive motivational 
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Pavlovian response biases. Like motivational response tendencies, such biased learning 

would allow us to optimally profit from stable environmental statistics, as this instrumental 

learning bias supports rapid learning of likely action-outcome associations (e.g. that an action 

caused a reward), while avoiding learning unlikely, spurious, associations (e.g. that inhibition 

caused a punishment).

Materials and Methods

General procedure and pharmacological manipulation
The study consisted of two test sessions with an interval of one week to two months. The first 

test day started with informed consent, followed by a medical screening. Participation was 

discontinued if subjects met any of the exclusion criteria (Appendix 1). On both test days, 

subjects first completed baseline measures. Next subjects received a capsule containing 

either 20 mg MPH (Ritalin®, Novartis) or placebo, in a double-blind, placebo-controlled, cross-

over design. MPH blocks the dopamine and noradrenaline transporters, thereby diminishing 

the reuptake of catecholamines. When administered orally, MPH has a maximal plasma 

concentration after 2 hours and a plasma half-life of 2-3 hours (Kimko et al., 1999). After an 

interval of 50 minutes, subjects started with the task battery containing the motivational 

Go/NoGo learning task. See Appendix 2 for an overview of the task battery. On average 

the motivational Go/NoGo learning task was performed 2 hours after capsule intake, well 

within the peak of plasma concentration. Both test days lasted approximately 4.5 hours, 

which subjects started at the same time (maximum difference of 45 minutes). Blood pressure, 

mood and potential medical symptoms were monitored three times each day: before capsule 

intake, upon start of the task battery and after finishing the task battery. Subjects were told 

to abstain from alcohol and recreational drugs 24h prior to testing and from smoking and 

drinking coffee on the days of testing. Subjects completed self-report questionnaires at home 

between (but not on) test days. Upon completion of the study, subjects received a monetary 

reimbursement or study credits for participation. The study was in line with the local ethical 

guidelines approved by the local ethics committee (CMO / METC Arnhem Nijmegen: protocol 

NL47166.091.13), pre-registered (trial register NTR4653, http://www.trialregister.nl/trialreg/

admin/rctview.asp?TC=4653), and in accordance with the Helsinki Declaration of 1975. 

Baseline measures, self-report questionnaires, mood- and medical symptom-ratings are 

reported in Appendix 2.

Subjects
As individual differences were a main focus of the study, we collected a large sample of 106 

native Dutch volunteers (aged 18 – 28 years, mean (SD)=21.5 (2.3); 53 women; 84 right-handed; 

sample size calculation reported in CMO protocol NL47166.091.13). Four subjects dropped 
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out after the first test day (due to too much delay between test days, loss of motivation, 

nausea, and mild arrhythmia). Two subjects dissolved the capsules before swallowing and are 

discarded because of uncertainty in the pharmacodynamics. One subject did not sufficiently 

engage in the task (only 13/2% Go responses on day 1/2) and was discarded as well. We 

repeated the analyses with these subjects included to confirm that this did not alter the 

conclusions (Appendix 3). Of the resulting 99 subjects, 48 subjects received MPH on the first 

day. Exclusion criteria comprised a history of psychiatric, neurological or endocrine disorders. 

Appendix 1 presents a complete overview of the exclusion criteria.

Motivational Go/NoGo learning task
Each trial started with the on-screen presentation of a cue (Figure 2A). During cue presentation 

subjects could decide to press a button (Go response) or not (NoGo response). Subjects could 

either press the left (Go-left) or right (Go-right) button on a button box. Subjects received 

feedback based on their response.

Each cue had a red or green edge. Cues with a red edge (Avoid cues) were followed by 

neutral feedback or punishment. Cues with a green edge (Win cues) were followed by reward 

or neutral feedback. Subjects were informed about these contingencies. Note that the explicit 

cue valence is in contrast to previous studies where subjects needed to learn the cue valence 

during the task (e.g. Cavanagh et al., 2013; Guitart-Masip et al., 2012). The rationale of explicit 

cue valence was to directly observe effects of cue valence on choice and minimize individual 

differences in learning the cue valence. Punishment consisted of the display of the red text 

‘-100’, accompanied by a low buzz, reward of the green text ‘+100’ together with a flourish 

sound, and the neutral feedback of the grey text ‘000’ together with a short beep. All cues had 

unique shapes and colours well distinguishable from the red and green edge. Cue colour and 

shape were randomized over cue types. Two separate stimulus sets were used for the two test 

days to prevent transfer effects, and set order was counterbalanced across subjects.

For each cue, there was one correct response (Go-left, Go-right or NoGo; Figure 2C), 

which subjects had to learn by trial and error. Feedback validity was 80%, i.e. correct (incorrect) 

responses were followed by the desirable outcome 80%(20%) of the time (Figure 2D). There 

were 8 cues in total (Figure 2B). The number of Go and NoGo cues was kept equal to prevent 

reinforcing an overall Go bias.

The order of cue presentation was pseudorandom, as cues could be repeated once at 

most. Each cue was presented 40 times. The task lasted approximately 30 minutes, including 

instructions and a self-paced break halfway. The instructions were presented on screen. 

Subjects were informed about the probabilistic nature of the feedback and that each cue 

had one optimal response. At the end of the task the total number of points won or lost 

was displayed on screen and subjects were informed beforehand that these points would be 

converted to a monetary bonus at the end of the study (mean=EUR2.90, SD=1.49).



69

CATECHOLAMINERGIC MECHANISMS OF MOTIVATED ACTION

3
Chapter

Listening span test
Working memory span was assessed with the Listening Span Test (Daneman and Carpenter, 

1980; Salthouse and Babcock, 1991), which was also used in two FMT PET studies showing 

positive correlations with striatal dopamine synthesis capacity (Cools et al., 2008; Landau 

et al., 2009). Subjects completed the Listening Span Test on day 2 prior to capsule intake. 

The Listening Span Test consists of sets of pre-recorded sentences, increasing from 2 to 7 

sentences. Subjects are presented with the sentences, and required to simultaneously answer 

written verification questions regarding the content of each sentence. At the end of each set, 

subjects recalled the final word of each sentence in the order of presentation. The Listening 

Span reflects the set size of which the subject correctly recalled the final words on at least two 

out of three trials. Listening span increased with half a point, when only one trial of the next 

level was correct.

Barratt impulsiveness scale
Trait impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11) (Patton et al., 1995). 

The BIS-11 is a self-report questionnaire, consisting of 30 questions tapping in common (non)

impulsive behaviours and preferences. The BIS-11 total impulsivity scores reflect the tendency 

towards impulsivity. Subjects completed the questionnaire at home between test days.

Statistical analyses
To assess the influence of motivational valence on behavioural activation, we first analysed 

Go vs. NoGo responses (irrespective of Go-left vs. Go-right). Second we tested whether effects 

on Go responses were explained by correct or incorrect Go responses. We were specifically 

interested how MPH altered Go/NoGo responding to Win vs. Avoid cues as a function of 

Listening Span and Impulsivity.

To account for both between and within subject variability, choice data were 

analysed with logistic mixed-level models using the lme4 package in R (Bates et al., 2014; R 

Developement Core Team, 2015). Reflecting our objectives, the mixed models included the 

within subject factors Drug (MPH vs. placebo), Valence (Win vs. Avoid cue), and Required 

Action (Go vs. NoGo), and the between subject factors Listening Span and Impulsivity. 

The analysis of correct and incorrect Go responses included only the Go cues; hence this 

analysis did not include the factor Required Action. Models included all main effects and 

interactions, except for the interactions between Listening Span and Impulsivity. All models 

contained a full random effects structure (Barr, 2013; Barr et al., 2013). We performed control 

analyses using a model comparison approach, where we tested whether the following 

factors improved model fit: Drug Order, Testing Day, Gender, and NLV (a measure for verbal 

intelligence). For completeness, we analysed reaction times (RTs) as a measure of behavioural 

vigour (Appendix 4).
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Computational modelling – Pavlovian response bias and instrumental learning bias
In all models, action weights (w) are estimated for each response option (a) for all trials (t) 

per cue (s). Based on these action weights choice probabilities are computed using a softmax 

function, as follows:

Eq. 1

In the simplest model (M1) the action weights are fully determined by the learned action 

values (Q-values). To compute the action values, we used standard delta-rule learning with 

two free parameters; a learning rate (ε) scaling the update term, and feedback sensitivity (ρ) 

scaling the outcome value (comparable to the softmax temperature).

Eq. 2

Here outcomes are reflected by r, where r ε{-1,0,1}. In the current paradigm cue valence is 

instructed, by means of the green and red cue edges. Therefore, the initial expected outcome 

is 0.5 for Win cues and -0.5 for Avoid cues. Initial Q-values (Q0) are set accordingly to ρ*0.5 for 

Win cues and ρ*-0.5 for Avoid cues.

In M2 a go bias parameter (b) is added to the action weights of Go responses. We 

then explored the influence of Pavlovian biases that modulate Go responding according to 

predicted reward value. Pavlovian values (V) contribute to the action weights in M3a, increasing 

(decreasing) the weight of Go responses for positive (negative) Pavlovian values respectively.

Eq. 3

Here the weight of the Pavlovian values is determined by the parameter π. Pavlovian values 

are fixed at 0.5 for Win cues and at -0.5 for Avoid cues, again because cue valence is instructed. 

In M3b we included the instrumental learning bias parameter (κ) instead of the Pavlovian 

bias, to assess whether the motivational bias can be explained in terms of enhanced learning 

of Go following a reward, and disrupted learning from punishment following NoGo.

Eq. 4

In model M4, we included both the Pavlovian bias parameter and the instrumental learning 

bias parameter.

We used a sampling method for hierarchical Bayesian estimation of group-level and 

subject-level parameters. The group-level parameters (X) serve as priors for the individual-level 

parameters (x), such that x ~ Ɲ(X,σ). The hyperpriors for σ are specified by a half-Cauchy (Gelman, 
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2006) with a scale of 2. The hyperpriors for X are centered around 0 (with the exception of Xρ) 

and weakly informative: Xρ ~ Ɲ(2,3), Xε,κ ~ Ɲ(0,2), Xb,π ~ Ɲ(0,3). All parameters are unconstrained, 

with the exception of ρ (positivity constraint; exponential transform) and ε ([0 1] constraint; 

inverse logit transform). To ensure that the effect of κ on ε (Eq.4) was symmetrical in model 

space (i.e. after sigmoid transformation to ensure [0 1] constraint), ε was computed as:

Eq. 5

Model estimations were performed using Stan software in R (RStan) (Stan Development Team, 

2016). Stan provides full Bayesian inference with Markov chain Monte Carlo (MCMC) sampling 

methods (Metropolis et al., 1953). The number of Markov chains was set at 4, with 200 burn-

in iterations and 1000 post burn-in iterations per chains (4000 total). Model convergence was 

considered when the potential scale reduction factor R < 1.1 for all parameters (Gelman and 

Rubin, 1992). In case model convergence was not reached, both (post) burn-in samples were 

increased to 1500. Not all models reached convergence at this point. Therefore, we repeated 

model estimation while excluding the subjects (N=5) for whom initially R > 1.1 in any one of 

the models, resulting in model convergence for all models. We report model evidence including 

all subjects in Appendix 5, showing that model selection and parameter inference remains the 

same when excluding these subjects. Model comparison was evaluated using the Watanabe-

Akaike Information Criteria (WAIC) (Watanabe, 2010). WAIC is an estimate of the likelihood of the 

data given the model parameters, penalized for the effective number of parameters to adjust for 

overfitting. Lower (i.e. more negative) WAIC values indicate better model fit. As WAIC is reported 

on the deviance scale (Gelman et al., 2014), a difference in WAIC value of 2-6 is considered positive 

evidence, 6-10 strong evidence, and >10 very strong evidence (Kass and Raftery, 1995).

Computational modelling – Effects of methylphenidate
Having established the mechanisms by which motivational valence may affect instrumental 

learning and activation, we extended the winning model to test which of these mechanisms 

are affected by MPH, putatively driven by a prolonged striatal presence of catecholamines 

(dopamine) following reward, due to reuptake inhibition by MPH.

In M5 we tested whether MPH altered the Pavlovian response bias. This model includes a 

parameter allowing for an MPH-induced change in the Pavlovian weight (πMPH):

Eq. 6

Next, we tested two mechanisms by which MPH might alter the bias in instrumental learning 

(κ). In M5b we tested whether MPH simply enhanced or reduced the learning bias parameter, 

estimating an additive effect of κMPH-selective:
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Eq. 7

Alternatively, the prolonged presence of catecholamines following reward under MPH could 

induce a more diffuse credit assignment, rather than a selective learning bias effect. To test this 

hypothesis, in M5c we included a MPH-induced learning bias parameter (κMPH-diffuse), which was 

used to update both Go responses, on all trials where any active Go response was followed by 

reward, in addition to the regular learning update for the chosen Go response:

Eq. 8

Where PE is the prediction error following the rewarded Go response: PE = ρrt – Qt-1(at,st). Thus 

where κMPH-selective enhances the learning of the selected Go response after reward, κMPH-diffuse 

induces learning of all Go responses when a Go response elicited reward.

To test whether MPH affected both the Pavlovian response bias and instrumental 

learning bias, M6 include πMPH parameter as well as the winning model of the two learning bias 

mechanisms (M5c - κMPH-diffuse). For completeness, we report the composite model including the 

parameters πMPH and κMPH-selective in Appendix 5. The hyperpriors are again centered around 0 and 

weakly informative: Xκmph ~ Ɲ(0,2) and Xπmph ~ Ɲ(0,3), where only  Xκmph-diffuse is constrained ([0 1] 

constraint; inverse logit transform).

Having established the winning model, we used two absolute model fit approaches 

to confirm that the winning model captures the effects of interest; the post-hoc absolute-fit 

approach (also called one-step-ahead prediction) and posterior predictive model simulation 

approach (Steingroever and Wagenmakers, 2014). The posterior predictive model simulations 

simply ‘play’ the task, using the estimated parameters. This approach, however, ignores sequential/

history effects of actually observed choices and outcomes. The ‘one-step-ahead’ prediction 

fits parameters to trials t1 - tn-1, and then predicts the choice on trial tn. Taking these sequential 

effects into account is particularly important to assess effects of the parameters that estimate the 

effect of previous choice/outcome combinations, i.e. the learning rate parameters, relative to the 

constant parameters like the Pavlovian and go biases. For both the one-step-ahead predictions 

and model simulations, we computed action probabilities for all subjects on all trials using the 

sampled combinations of all individual-level parameter estimates. For the one-step-ahead 

predictions the observed choices and outcomes were used to update the action probabilities. For 

the model simulations choices were simulated depending on the computed action probabilities, 

and outcomes were determined according to the ground-truth outcome probabilities (i.e. a 

correct response would lead to the desired outcome 80% of the time). Subsequently, outcomes 

corresponding to the simulated choices were used to update the action probabilities. The one-

step-ahead prediction and simulations were repeated for all sampled parameter combinations 
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(4000 times), and action probabilities were averaged over repetitions. Averaging over repetitions 

also minimizes effects of randomness due to the stochastic nature of the choice simulation.

Figure supplements

Figure 2 – figure supplement 1. Individual traces (black lines) and group average (coloured lines) of 
correct and incorrect Go responses using a sliding average of 5 trials.
Traces are averaged within cue types and over sessions. Individual traces are semi-transparent, so that 
darker areas reflect more overlaying subjects. Across trials, subjects increased correct Go responses (top) 
and decreased incorrect Go responses (bottom). Subjects performed at ceiling level more rapidly for the 
Go-to-Win cues (top-left) than Go-to-Avoid cues (top-right).

Figure 3 – figure supplement 1. Subject traces of model M4 (green/red) overlaid on observed behaviour 
(black).
M4 one-step-ahead predictions capture the individual variability in task performance.



74

CHAPTER 3

 

Figure 3 – figure supplement 2. Illustration of the behavioural effects associated with the Pavlovian bias and 
instrumental learning bias parameters.
Model M4 one-step-ahead predictions (coloured) overlaid on real data (grey) for the subjects with the upper 
versus lower tertile of parameter estimates. (a) Effects of Pavlovian bias (π). A strong Pavlovian bias (top 33% 
of π estimates) predicts higher Go responding for the Win than Avoid cues from the first trial onward, vice 
versa for a weak Pavlovian bias (33% lowest π estimates). (b) Effects of instrumental learning bias (κ). A strong 
instrumental learning bias (33% highest κ estimates) predicts steeper Go-to-Win learning and shallower Go-to-
Avoid learning, vice versa for a weak instrumental learning bias (33% lowest κ estimates). See also Figure 3B for 
the temporal dynamics of the parameter-behaviour correlations.

Figure 3 – figure supplement 3. M4 subject-level parameters in model space (i.e. untransformed).
The diagonal panels contain the posterior densities for the subject-level parameter means. The off-diagonal 
panels show the correlation over subjects in mean parameter estimates. Importantly, the two key parameters, 
Pavlovian bias (π) and instrumental learning bias (κ) are not correlated to any of the other parameters. We do 
note that the feedback sensitivity parameter (ρ) is anti-correlated with the learning rate (ε), such that the impact 
of high feedback sensitivity estimates is restricted by low learning rates. This correlation is not problematic, 
because independent estimation of learning rate and feedback sensitivity is no direct interest to the questions 
we ask.
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Figure 4 – figure supplement 1. Simple effects of MPH-induced changes in motivational bias.
(a) The span-dependent motivational bias emerged under MPH (right; p=0.032), and was not significant 
under placebo (left; p=0.34). (b) MPH did not significantly alter the motivational bias proportional to 
working memory span for correct Go responses (correct Go: p=0.15).

Figure 5 – figure supplement 1. Illustration of the behavioural effects of MPH related to the Pavlovian bias 
and diffuse learning bias parameters.
Model M6 one-step-ahead predictions (coloured) overlaid on real data (grey) for the subjects with the 
33% strongest vs. weakest parameter estimates. The coloured bars at the bottom indicate the trial-by-trial 
correlation across all subjects, of the parameter estimate with the effect of MPH on Go responding per 
cue. The R value indicates the average correlation. (a) The effect of MPH on Pavlovian bias (πMPH). Strong 
πMPHestimates predict that MPH increases the motivational bias (increased Go to Win cues and decreased 
Go to Avoid cues), and vice versa for weak πMPH estimates. The influence of πMPH is present from the first 
trial onward and decreases over time as indicated by the correlation coefficients. (b) Effect of MPH on 
diffuse learning bias (κMPH-diffuse). Strong κMPH-diffuse estimates predict that MPH increases the motivational 
bias for Win cues specifically, whereas this effect is diminished for subjects with relatively weak κMPH-
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diffuse estimates. The effect of κMPH-diffuse  is experience-dependent and evolves over time. These one-step-
ahead predictions illustrate how each parameter results in an increased motivational bias under MPH, but 
with unique temporal dynamics, even though the parameter themselves are constant.

Figure 5 – figure supplement 2. M6 subject-level parameters in model space (i.e. untransformed).
The diagonal panels contain the posterior densities for the subject-level parameter means. The off-
diagonal panels contain the parameter correlations over subjects. Importantly, the parameters estimating 
the effects of MPH on Pavlovian bias (πMPH) and diffuse learning bias (κMPH-diffuse) are not correlated to any 
of the other parameters.

Supplementary Files

Appendix 1 - Exclusion criteria
Exclusion criteria comprised a history of psychiatric, neurological or endocrine disorders. 

Further exclusion criteria were autonomic failure, hepatic, cardiac, obstructive respiratory, 

renal, cerebrovascular, metabolic, ocular or pulmonary disease, epilepsy, substance abuse, 
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suicidality, hyper/hypotension, diabetes, pregnancy/breastfeeding, lactose intolerance, 

abnormal hearing or (uncorrected) vision (e.g. colour blindness), irregular sleep/wake rhythm, 

regular use of corticosteroids, use of MAO inhibitor, anaesthetic, anti-depressant or anti-

psychotic drugs within the week prior to the start of the study, use of psychotropic medication 

or recreational drugs/alcohol 24 hours before each test day, and first degree family members 

with schizophrenia, bipolar disorder, ventricular arrhythmia or sudden death. Inclusion age 

range was 18-45 years old.

Appendix 2 - Baseline measures and mood ratings
Prior to capsule intake, subjects completed a Dutch reading test (NLV, Schmand et al., 1991) as 

a proxy of verbal intelligence on day 1, and the Listening Span Test (Daneman and Carpenter, 

1980; Salthouse and Babcock, 1991) on day 2. Subsequently subjects completed the Digit Span 

Test (forward and backward; Wechsler, 2008) and the training phase of a Pavlovian-Instrumental 

Transfer task (PIT, Geurts et al., 2013; Huys et al., 2011) of which data will be reported elsewhere. 

Between test days, subjects completed a number of self-report questionnaires. The group that 

received MPH on day 1 did not differ significantly on any of the baseline measures from the 

group that received placebo on day 1 (p<0.05). See Appendix 2—table 1 for an overview of the 

neuropsychological test scores and self-report questionnaires.

Mood ratings, heart rate and blood pressure were monitored for safety reasons three 

times during each test day, (i) before capsule intake, (ii) upon start task battery, and (iii) upon 

completion of the task battery. The mood ratings consisted of the Positive and Negative Affect 

Scale (PANAS, Watson et al., 1988) and the Bond and Lader Visual Analogues Scales (calmness, 

contentedness, alertness; Bond and Lader, 1974), as well as a medical Visual Analogues Scale.

We assessed whether MPH affected mood and medical symptoms. For this control analysis we 

performed a repeated measures MANOVA using Pillai’s trace with the within subject factors 

Time (baseline/start testing/end testing) and Drug (MPH/placebo), and dependent variables 

Positive Affect, Negative Affect, Calmness, Contentedness, Alertness, and Medical Symptoms. 

Significant effects were further explored with Bonferonni corrected repeated measures 

ANOVA, where alpha = 0.05/6 ≈ 0.008. Greenhouse-Geisser correction was applied when the 

assumption of sphericity was not met.

MPH affected these self-report ratings (Time x Drug: V=0.38, F12,90=4.7, p<0.001), in the 

absence of baseline differences between the MPH and placebo groups (V=0.07,  F6,96=1.1, 

p=0.359). After capsule intake MPH increased Positive Affect (F1,101=17.5, p<0.001), Alertness 

(F1,101=15.2, p<0.001), and Medical Symptoms (F1,101=11.1, p=0.001), and decreased Calmness 

(F1,101=8.6, p=0.004), relative to placebo. We confirmed that the effects of MPH on the self-

report ratings did not further interact with Listening Span and Impulsivity (p>0.05). Thus, the 

MPH-induced changes in mood and medical symptoms were orthogonal to the Listening Span 

dependent MPH effects we observed in the task.
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 Group 1  
(Placebo  
Day 1)

Group 2  
(MPH  
Day 1)

Neuropsychological tests Listening span 5.0 (0.9) 4.6 (1.2) p=0.16

NLV 94.4 (7.6) 92.6 (7.6) p=0.23

Digit span – forward 17.2 (3.7) 16.2 (3.6) p=0.16

Digit Span - backward 14.7 (3.4) 13.9 (2.7) p=0.22

Self-report questionnaires Impulsivity (BIS-11) 63.5 (8.9) 60.2 (7.9) p=0.052*

Behavioural inhibition (BIS) 16.4 (3.7) 16.3 (3.5) p=0.90

Behavioural activation (BAS) 22.8 (3.9) 23.9 (4.0) p=0.17

Need for cognition (NCS) 64.5 (10.5) 62.2 (10.5) p=0.26

Social support (MSPSS) 71.1 (10.1) 69.3 (9.6) p=0.35

Social status (BSMSS) 49.8 (12.1) 45.9 (12.7) p=0.11

Social dominance (SADQ) 4.1 (0.9) 4.1 (0.8) p=0.82

Aggressive dominance (SADQ) 2.6 (0.6) 2.6 (0.6) p=0.69

Depressive symptoms (BDI-II) 3.5 (3.7) 3.6 (3.9) p=0.97

Anxiety symptoms (STAI) 32.4 (6.6) 32.4 (7.2) p=1.0

Appendix 2 - table 1. Mean(SD) scores for neuropsychological tests and self-report questionnaires for 
the group that received placebo and MPH on day 1. 
Significance levels for the between group differences are reported. Self-report questionnaires include 
the Barratt Impulsiveness Scale (BIS-11; Patton et al., 1995), the Behavioural Inhibition Scale/Behavioural 
Activation Scale (BISBAS; Carver and White, 1994), Need for Cognition Scale (NCS, Cacioppo et al., 1984), 
Multidimensional Scale of Perceived Social Support (MSPSS, Zimet et al., 1988), Barratt Simplified Measure 
of Social Status (BSMSS, Barratt, 2006), Sociable and Aggressive Dominance Questionnaire (SADQ, Kalma 
et al., 1993), Beck Depression Inventory II (BDI-II; Beck et al., 1996), Spielberger Trait Anxiety Inventory 
(STAI; Spielberger et al., 1983). *One subject had an outlying score on the BIS-11. Without outlier: p=0.09.

Appendix 3 - General performance and individual differences in drug effects on task 
performance
In the main manuscript, we report the results of 99 (out of 106) subjects. Four subjects did 

not complete both test days, two subjects dissolved the capsules before swallowing, and 

one subject did not sufficiently engage in the task (only 13/2% Go responses on day 1/2). We 

then repeated the analyses with these subjects included to confirm that this did not alter the 

conclusions (Appendix 3 - Figure 1).
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Appendix 3 - figure 1. Logistic mixed model estimates of the probability of Go responses to verify that 
exclusion of a subset of subjects (7) did not affect our inference.
Left: N  =  99; Right: N  =  106. Fixed effect estimates and 95% confidence interval (CI) are plotted on 
probability scale. Effects are sorted by lower bound of the CI. The results including all 106 subjects replicate 
the findings when discarding the subset of subjects (four subjects dropped out after the first test day, two 
subjects dissolved the capsules before swallowing, one subject did not sufficiently engage in the task).

MPH increased the proportion of Go responses to cues requiring a Go response depending 

on working memory span (Required Action x Drug x Listening Span: Χ2
1=7.5, p=.006). 

Under MPH, higher span subjects made more Go responses to Go than NoGo cues (MPH: 

Χ2
1=18.3, p<.001), while this was not the case under placebo (Placebo: Χ2

1=1.2, p=.264). This 

effect of MPH was not significant across the group (independent of span) either (Required 

Action x Drug: Χ2
1=3.2, p=.073). Thus, independent of the cue valence, MPH altered Go/

NoGo responding as a function of the optimal action. Again, this effect of MPH covaried 

with working memory span, and not trait impulsivity (Appendix 3 - Figure 1). High span 

subjects made more (fewer) Go responses to cues requiring Go (NoGo) responses under MPH 

relative to placebo. Low span subjects showed the opposite pattern. These results could be 

interpreted as a cognitive enhancing effect of MPH in high span subjects, but not in low span 

subjects. This MPH-induced response accuracy is orthogonal to our effect of interest, and 

could thus not be attributed to an altered Pavlovian response bias or instrumental learning 

bias. Although this MPH effect on response accuracy is interesting in itself, it was not the 

focus of the current study, and therefore serves primarily as an invitation for future studies 

to assess the cognitive enhancing effects of MPH on instrumental responding.
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Appendix 4 - Reaction times
For completeness, we analysed reaction times as a measure of behavioural vigour. First, we 

confirmed that the expected task effects are present. Second, we assessed whether the MPH 

effects on Go responding were accompanied by effects on RT, potentially indicative of a speed-

accuracy trade-off. RT data were log(ln)-transformed to improve normality and analysed with 

linear mixed-level models using the lme4 package in R (Bates et al., 2014;  R Development 

Core Team, 2015). We assessed RTs of all Go responses, irrespective of the accuracy of the Go 

responses, in a model including the within subject factors Drug (MPH vs. placebo), Valence 

(Win vs. Avoid cue), and Required Action (Go vs. NoGo), and the between subject factor 

Listening Span.

Regarding the expected task effects, subjects were faster when they made Go responses 

to Go vs. NoGo cues (Required Action: X2
1=296.2, p<0.001), indicative of learning (i.e. faster to 

correct than incorrect responses). We also observed effects of the motivational bias in reaction 

times, where cue valence influenced RTs (Valence:  X2
1=89.5, p<0.001), such that RTs were 

shorter to Win vs. Avoid cues. This effect of cue valence was stronger for NoGo compared to 

Go cues (Required Action x Valence: X2
1=11.5, p<0.001), though both were highly significant 

(Go: X2
1=53.7, p<0.001; NoGo: X2

1=66.6, p<0.001).

Regarding the MPH effects on RT, there was no effect of MPH on the motivational valence 

effect on RT (Valence x Drug: X2
1=0.8, p=0.37), in line with the absence of any MPH main effect 

on Go responding. In contrast to Go responding, there were no Listening Span-dependent 

effects of MPH on RTs (all p>0.7). The absence of MPH effects on RTs suggests that the MPH 

effects reported in the main manuscript are not due to an effect on speed-accuracy trade-off. 

Perhaps of interest, but beyond the scope of this article, is that we did observe span-dependent 

effects independent of drug treatment. Higher span subjects sped up more for Win relative 

to Avoid cues (Valence x Listening Span: X2
1=4.2, p=0.041), and for Go relative to NoGo cues 

(Required Action x Listening Span: X2
1=5.2, p=0.023). No other effects were significant (p>0.05).

Appendix 5 - Computational modelling
In the main article, we report five base models (M1, M2, M3a, M3b, M4) to disentangle the role of 

Pavlovian and instrumental learning mechanisms in driving motivational biasing of action. The 

winning base model was then extended in three competing models (M5a-c) and a composite 

model (M6) to assess the effects of MPH on these mechanisms. Not all models reached convergence 

when including all subjects of the behavioural analysis (N=99). For 5 subjects,    exceeded 1.1 in 

one or more of the models M1/M2/M5a/M6. Therefore, we repeated model estimation while 

excluding the 5 subjects for whom initially   exceeded 1.1 in any one of the models, resulting 

in model convergence for all models (see main article). In Appendix 5 - Figure 1A-E we report 

the model comparison results and parameter inference for the models including all subjects, to 

demonstrate our conclusions do not depend on the exclusion of these 5 non-converging subjects.
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Model estimation was performed using Stan software in R (RStan)(Stan Development Team, 
2016). Stan provides full Bayesian inference with Markov chain Monte Carlo (MCMC) 
sampling methods (Metropolis et al., 1953). The number of Markov chains was set at 4, with 
200 burn-in iterations and 1000 post burn-in iterations per chains (4000 total). Model 

convergence was considered when the potential scale reduction factor 𝑅𝑅<1.1 for all 
parameters(Gelman and Rubin, 1992), and all models reached convergence accordingly. 
Model comparison was evaluated using the Watanabe-Akaike Information Criteria 
(WAIC)(Watanabe, 2010). WAIC is an estimate of the likelihood of the data given the model 
parameters, penalized for the effective number of parameters to adjust for overfitting. Lower 
(i.e. more negative) WAIC values indicate better model fit. As WAIC is reported on the 
deviance scale (Gelman et al., 2014), a difference in WAIC value of 2–6 is considered positive 
evidence, 6–10 strong evidence, and >10 very strong evidence (Kass and Raftery, 1995). We 
additionally provide a measure of explained variance (R2) for the models, as R2 might be 
considered more intuitive. However, WAIC is the most appropriate measure to compare 
models as WAIC penalizes for increasing model complexity. Moreover, WAIC takes into 
account how much variance a parameter could explain (for example, while the Pavlovian bias 
impacts all trials, the EEG model parameters only have an impact on the incongruent trials 
and can thereby explain less variance). In contrast, the R2 values do not account for the 
number of parameters and the extent to which a parameter is restricted in explaining 
variance. 
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were analysed with linear mixed-level models using the lme4 package in R (Bates et al., 2014; 
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(correct vs. incorrect). RTs were ln-transformed to improve normality. Models included all 
main effects and interactions, and a full random effects structure (Barr, 2013; Barr et al., 2013). 

The response times echoed the effects on proportion of Go responses. Learning was 
evidenced by shorter RTs for Go than NoGo cues (X2

1=62.3, p<.001) and for correct relative to 
incorrect Go responses (X2

1=88.3, p<.001). Motivational biasing was also evident from RTs, as 
subjects responded faster to Win vs. Avoid cues (X2

1=98.6, p<.001) independent of the 
response requirements (X2

1<1, p=.979) or accuracy (X2
1=1.7, p=.198). Importantly, the effect of 

cue valence on RTs covaried with the effect on proportion of Go responses, such that 
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additionally provide a measure of explained variance (R2) for the models, as R2 might be 
considered more intuitive. However, WAIC is the most appropriate measure to compare 
models as WAIC penalizes for increasing model complexity. Moreover, WAIC takes into 
account how much variance a parameter could explain (for example, while the Pavlovian bias 
impacts all trials, the EEG model parameters only have an impact on the incongruent trials 
and can thereby explain less variance). In contrast, the R2 values do not account for the 
number of parameters and the extent to which a parameter is restricted in explaining 
variance. 
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Note that the go bias estimates of the winning base model M4 did not significantly 

deviate from 0 across the group (83 % of posterior distribution < 0, cut-off is usually 

considered 90%). The fact that inclusion of this go bias parameter did improve model 

evidence suggests large individual variance. In other words, inclusion of this parameter 

was important for explaining the data, but the direction of its effect was variable across 

subjects.  It is noteworthy that the go bias estimates are on average negative (even if not 

significantly different from 0), in contrast to previous studies (Cavanagh et al., 2013; Guitart-

Masip et al., 2012). This discrepancy likely is the result of incorporation of the additional Go 

response in the current paradigm, such that chance level of Go responses is 67%, rather 

than 50%, and so a positive bias estimate corresponds to a greater than 2/3 proportion of 

Go responses overall.

Furthermore, in the extended MPH models, both πMPH (M5a) and κMPH-diffuse (M5c) 

greatly increased model evidence, in contrast to addition of κMPH-selective (M5b), which only 

marginally increased model evidence. Therefore, to assess whether both Pavlovian (πMPH) 

and instrumental learning (κMPH-diffuse) effects explained Listening Span-dependent MPH 

variance independently (i.e. whether there was evidence for both of these effects), we 

constructed a composite model (M6 in main text; M6b in Appendix 5 - Figure 1) containing 

both parameters. For completeness, here we also report the composite model containing 

both the πMPH and κMPH-selective parameters (M6a). As expected, model selection favours the 

composite model with a spread of credit assignment (κMPH-diffuse, M6b; WAICN=94=66069) 

over the model that includes a strengthening of the selective instrumental learning bias 

(κMPH-selective, M6a; WAICN=94=66153). Furthermore, in this model κMPH-selective relates negatively 

to Listening Span (R=.22, p=.036; Appendix 5 - Figure 1F), now that this model accounts 

for the MPH-induced Pavlovian bias variance. This negative correlation cannot explain the 

positive relation between the relation between working memory span and the effects of 

MPH on motivational bias, and as such further corroborates our conclusion that MPH does 

not simply increase the strength of the instrumental learning bias as a function of listening 

span.

In the main article, we report the subject-level parameter estimates in model space 

(Figure 3,5). Here we additionally report the untransformed parameter estimates (Appendix 

5 - Table 1: subject-level, Appendix 5 - Table 2: top-level) and the confidence of top-level 

parameters deviating from 0 for each model (Appendix 5 - Table 3). In Appendix 5 - Figure 

2,3 we display the one-step-ahead predictions for the both the winning and non-winning 

base and MPH models.

We refer to the  Decision Letter  and  Author Response  available at elifesciences.org/
articles/22169#decision-letter for a discussion on the potential confound of asymmetric 

reward/punishment sensitivities, where we show control analyses that speak against this 

potential confound.
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Appendix 5—figure 1. Model selection and parameter inference for base models and extended MPH 
models including all subjects (N = 99).
(a-b) Model selection favours M4 of the base models and M6b of the extended MPH models as reported 
in the main article. Note that M6b in this figure corresponds to M6 in the main manuscript. (c-d) Posterior 
densities of top-level parameters of the winning base and MPH model, in model space (i.e. transformed). 
Only κ is presented untransformed (i.e. in sample space), as it is added to ε0 prior to transformation. (e) As 
reported in the main article, πMPH and κMPH-diffuse of M6b positively correlate with Listening Span. (f) In the 
composite model M6a, κMPH-selective correlates negatively with Listening Span (N=94; Rho=−0.22, p=0.036), 
which further supports that this parameter cannot capture the positive relation between listening span 
and the effect of MPH on motivational bias. Note that we report the correlation here for the 94 subjects for 
whom the parameters were reliably estimated, i.e. model convergence was reached.
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Base models Extended MPH models

M1 M2 M3a M3b M4 M5a M5b M5c M6a M6b

ρ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ε 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.00 0.00 0.29 0.17 0.13 0.12 0.01 0.09 0.01

π 1.00 0.96 0.87 0.98 0.70 0.91 0.91

κ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

πMPH 0.72 0.71 0.09

κ MPH-selective 0.67 0.81

κ MPH-diffuse 0.00 0.00

Appendix 5—table 3. Confidence/probability that top-level parameter is larger than 0.

Appendix 5—figure 2. Average one-step-ahead predictions for the base models M2-4 overlaid on the 
observations in grey.
The one-step-ahead predictions indicate the action probabilities as predicted by the model, using each 
subject’s actual choices and outcomes.
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Appendix 5—figure 3. Average one-step-ahead predictions for the extended MPH models M5-6 overlaid 
on the observations in grey.
The one-step-ahead predictions generate the action probability of each choice, based on the history of 
the subject’s actual choices and outcomes preceding the choice. The predictions are separately plotted 
for MPH (top) and placebo (bottom). We observed no main effect of MPH on the motivational bias (i.e. 
more Go to Win cues relative to Avoid cues). Accordingly, all models make highly similar predictions under 
MPH and placebo across the group.
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Abstract

Motivation exerts control over behaviour by eliciting Pavlovian responses, which can either 

match or conflict with instrumental action. We can overcome maladaptive motivational 

influences, putatively through frontal cognitive control. However, the neurocomputational 

mechanisms subserving this control are unclear; does control entail upregulating instrumental 

systems, downregulating Pavlovian systems, or both? We combined EEG recordings with 

a motivational Go/NoGo learning task (N=34), where multiple Go options enabled us to 

disentangle selective action learning from non-selective Pavlovian responses. Midfrontal 

theta-band (4-8Hz) activity covaried with the level of Pavlovian conflict, and was associated 

with reduced Pavlovian biases, rather than reduced instrumental learning biases. Motor and 

lateral prefrontal regions synchronized to the midfrontal cortex, and these network dynamics 

predicted the reduction of Pavlovian biases over and above local, midfrontal theta activity. This 

work links midfrontal processing to detecting Pavlovian conflict, and highlights the importance 

of network processing in reducing the impact of maladaptive, Pavlovian biases.

PLOS Biology Author Summary

The anticipation of reward and punishment are key drivers of behavior: we tend to take action 

for rewards, while holding back in the face of punishment. This motivational bias might have 

an  overall evolutionary advantage, but can also work against us in specific situations. Here 

we first asked whether this motivational bias relies on innate, automatic action tendencies, 

or whether this bias might actually  itself  be learned. Secondly, we studied which brain 

processes reduce the impact of these motivational drives when they become dysfunctional. 

By comparing the actions of human participants to the predictions of several mathematical 

models, we showed that the motivational bias in action relies partly on automatic tendencies 

and partly on asymmetric learning from experience. We then observed that activity over the 

midfrontal cortex specifically increased as a function of how dysfunctional the automatic 

tendencies were. Additionally, this  midfrontal cortex activity was functionally connected to 

the motor and lateral frontal cortex, which play a role in activating / inhibiting behavior. By 

incorporating this connectivity into the mathematical models, we showed that this midfrontal 

connectivity predicted reduced impact of dysfunctional automatic tendencies on behavior. We 

propose that the midfrontal cortex detects dysfunctional action tendencies, and implements 

cognitive control by signaling across the network.
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Introduction

Potential rewards and losses are key drivers of our actions, with consequences ranging 

from highly desirable (e.g., raise or promotion) to unwanted (e.g., bankruptcy) and even 

inconceivable (the collapse of the worldwide financial market). The valence of these outcomes 

is particularly well known to bias our actions: whereas anticipated rewards promote taking 

action, anticipated losses promote holding back from taking action (Dickinson and Balleine, 

1994; Guitart-Masip et al., 2014a; Huys et al., 2011). These motivational biases are often 

beneficial (e.g., working harder to gain a promotion, and stop spending money to avoid 

bankruptcy), but they can also conflict with instrumental requirements imposed by the 

environment (Hershberger, 1986) (e.g., the need to stop side-tracking to obtain the promotion 

more effectively, and work harder at job applications to avoid the bankruptcy). Fortunately, 

we are not enslaved to our motivational drives; we can often overcome our motivational 

biases and adapt to the environmental requirements, putatively by recruiting the midfrontal 

cortex (Cavanagh et al., 2013; Cavanagh and Frank, 2014) as a hub in frontal control networks 

(Cohen, 2011). Here, we set out to uncover the neurocomputational mechanisms by which the 

midfrontal cortex reduces motivational control over our actions.

The well-established motivational biases in action (Davis and Wright, 1979; Duffy, 1962; 

Estes, 1943; Estes and Skinner, 1941; Geurts et al., 2013; Huys et al., 2011; Swart et al., 2017) 

arise at least partly from Pavlovian mechanisms (Estes, 1943; Estes and Skinner, 1941), such 

that appetitive conditioned cues globally promote behavioural activation, and aversive 

conditioned cues globally inhibit behavioural activation, independently of instrumental 

requirements. In other words, cue valence elicits non-selective Pavlovian (in)action, rather 

than enhancing selective instrumental responses. These Pavlovian response tendencies can be 

helpful in reducing computational load by shaping our actions in a hardwired manner (Dayan 

et al., 2006). Consequently, the Pavlovian response tendencies become disadvantageous 

when they are incongruent with instrumental requirements, requiring us to rely more on the 

relatively flexible, yet slower, instrumental system. We have recently demonstrated, however, 

that the instrumental system is susceptible to motivational valence biases as well, which are 

manifest as a result of biases in learning rather than directly on choice (Swart et al., 2017). 

More specifically, reward outcomes are more effective in reinforcing specific Go actions and 

less effective in reinforcing NoGo responses. Conversely, punishment outcomes are more 

effective in inducing avoidance of specific Go responses that preceded them and less effective 

following NoGo responses. These biases are consistent with an emerging understanding of 

the dopaminergic mechanisms of corticostriatal plasticity (Collins and Frank, 2014). Moreover, 

this instrumental learning bias explains a substantial portion of the behaviour otherwise 

attributed to a Pavlovian system. Taken together, Pavlovian and instrumental learning biases 

complementarily contribute to the well-known motivational bias in action.

The motivational biasing of action is often adaptive, but becomes maladaptive when 
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these biases are incongruent with the environmental requirements. The midfrontal cortex is 

the key region that has been linked to reducing motivational biases when these biases become 

maladaptive (Cavanagh et al., 2013; Cavanagh and Frank, 2014), which has been assumed so 

far to reflect a modulation of the Pavlovian response biases. However, previous studies did not 

disentangle Pavlovian and instrumental learning biases, and thus the reduced motivational 

biases might just as well reflect a modulation of the instrumental learning biases. Moreover, the 

midfrontal cortex has extensively been linked to reinforcement learning signals, both at time 

of response and feedback (Hauser et al., 2014; Holroyd and Coles, 2002; Marco-Pallares et al., 

2008; van de Vijver et al., 2011; Van de Vijver et al., 2014), and has been proposed to modulate 

learning in downstream target areas (Cohen et al., 2011). Therefore, it is pertinent to assess 

whether the midfrontal signals are related to modulations of the Pavlovian or instrumental 

system.

Here, we propose that the midfrontal cortex is specifically implicated in reducing 

motivational biases by detecting and signalling conflict between the Pavlovian and 

instrumental systems, relying on similar neural mechanisms as evident in classic response 

conflict. Classically, the midfrontal cortex has been linked to detection of response conflict 

(Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur et al., 2011; Pastötter 

et al., 2013; van Driel et al., 2015), signalling the need for cognitive control to elevate the 

decision threshold and prevent impulsive responses (Aron et al., 2016; Cavanagh et al., 2011; 

Cavanagh and Frank, 2014; Frank et al., 2015; Herz et al., 2016; Kelley et al., 2018; Zavala et 

al., 2014). In classic response conflict tasks (Simon and Rudell, 1967), task-irrelevant features 

trigger prepotent responses that can conflict with the required response as signalled by the 

task-relevant features. During these conflict trials, oscillatory activity in the theta frequency 

range (4-8Hz) increases over the midfrontal cortex (Cohen and Ridderinkhof, 2013; van Driel 

et al., 2015), putatively reflecting the detection of conflict, and this activity is in turn predictive 

of behavioural performance (Cohen and Cavanagh, 2011). Moreover, successful resolution 

of response conflict is accompanied by increased functional connectivity between the 

midfrontal cortex and task-related regions (most notably, the dorsolateral prefrontal cortex 

and motor cortex) (Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013), thought to 

reflect signalling of the increased need for control in order to elevate the decision threshold 

accordingly (Aron et al., 2016; Cavanagh et al., 2011; Frank et al., 2015). We hypothesized that 

the midfrontal cortex similarly i) detects conflict between the Pavlovian and instrumental 

systems, rather than modulating Pavlovian and instrumental learning biases in general, and ii) 

signals the Pavlovian conflict to the dorsolateral prefrontal cortex and motor cortex in order to 

facilitate instrumental behaviour by preventing impulsive, Pavlovian responses, yet would not 

be predictive of the specific required response per se.

In the current study, we employ a motivational Go/NoGo learning task with multiple 

Go response options (Swart et al., 2017) and concurrent EEG surface recordings to firstly 
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disentangle non-selective Pavlovian activation from selective instrumental responses, and 

test whether midfrontal theta activity covaries with the level of Pavlovian conflict, in line with 

detection of the Pavlovian conflict. Second, we assess whether the midfrontal theta responses 

are associated with reduced Pavlovian response biases, reduced instrumental learning biases, 

or both. Finally, we test whether synchronization of the dorsolateral prefrontal cortex and 

motor cortex predicts the reduction of the motivational biases over and above the local, 

midfrontal theta activity, in line with conflict resolution being instantiated by signalling to 

downstream targets (Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur et al., 

2012; van Driel et al., 2015, 2012).

Results

Task performance: Cue and outcome valence complementarily bias motivated action
In the motivational Go/NoGo learning task, 34 healthy subjects needed to learn the correct 

responses (Go-left/Go-right/NoGo) by trial-and-error in order to gain rewards (Win cues) and 

avoid losses (Avoid cues), see Figure 1. The inclusion of multiple Go response options, enables 

disentangling the impact of reward / punishment value on global, Pavlovian behavioural 

activation from that on selective, instrumental action selection and learning (see computational 

modelling below).

Over trials, subjects increased Go responding to the cues requiring Go vs. NoGo responses 

(X2
1=135.7, p<.001; Figure 1), indicative of task learning. Crucially, motivational valence 

strongly biased Go responding; subjects made more Go responses to Win than Avoid cues 

(X2
1=16.3, p<.001), independent of the Go/NoGo requirements (X2

1=.6, p=.427). This increase 

in Go responses was by definition incorrect for the NoGo cues, and driven by both correct and 

incorrect Go responses for the Go cues (correct Go: X2
1=10.8, p=.001; incorrect Go: X2

1=5.1, 

p=.024). Moreover, the accuracy of Go responses did not significantly differ for Go-to-Win and 

Go-to-Avoid cues (X2
1=1.6, p=.200). Thus, we observed a clear effect of motivational valence on 

Go responding, which was driven by both correct and incorrect Go responses.

Previously, we showed that this motivational biasing of Go/NoGo responding could partly 

be attributed to generalized, Pavlovian response biasing, and partly to biased instrumental 

learning of selective actions (Swart et al., 2017). That is, reward cues directly promoted 

non-selective behavioural activation, whereas reward outcomes preferentially facilitated 

instrumental learning for selective Go responses compared to NoGo responses. Similar 

Pavlovian and instrumental learning biases were observed for punishment and inaction. In 

the following, we disentangle the contribution of these cue-based Pavlovian response biases 

and outcome-based instrumental learning biases to the observed motivational bias in Go 

responding, before turning to how they are impacted by frontal EEG signals.
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Figure 1. Motivational Go/NoGo learning task and performance.
(a) On each trial, a cue appears on screen and response-dependent feedback follows. By trial-and-error, subjects 
should learn to press left or right (Go cues) and withhold responding (NoGo cues) during cue presentation. 
Feedback is probabilistic; correct responses are followed by rewards for Win cues and neutral outcomes for Avoid 
cues 80% of the time, and by neutral outcomes for Win cues and punishments for Avoid cues otherwise. For 
incorrect responses these probabilities are reversed. Rewards and punishments are visualized by money falling 
in and out of a basket respectively. Image adapted from (Swart et al., 2017). (b) Each cue has only one correct 
response; Go-left, Go-right, or NoGo. In total there are 8 different cues over which cue valence (Win vs. Avoid) 
is orthogonal to the required action (Go vs. NoGo). The motivationally incongruent cues, where the Pavlovian 
response tendencies are opposite to the instrumental requirements, are marked in grey. (c) Average trial-by-trial 
behaviour (shaded areas indicate the standard error of the mean), collapsed over cues of the same category. 
Subjects (N=34) decrease incorrect Go responses (left: NoGo cues; right: Go cues), and increase correct Go 
responses over trials (right), illustrative of task learning. Note that only one of the Go responses (Go-left/Go-right) 
was considered correct for the Go cues, whereas all Go responses were incorrect for the NoGo cues. Notably, 
the initial dip in Go responses for the Go-to-Avoid cues suggests that cue valence affects Go responding once 
the cue valence is known, i.e. once punishment has been experienced. (d) Overall, subjects make significantly 
more Go responses for Go than NoGo cues. Orthogonal to the action requirements, subjects make more correct 
and incorrect Go responses for the Win than Avoid cues, which we refer to as the motivational bias. Error bars 
represent the standard error of the difference. ***p<.001.
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We set out to disentangle the influence of Pavlovian response biases and biased 

instrumental learning in a computational modelling framework (Swart et al., 2017). First, we 

fitted a simple reinforcement-learning model (M1) to the subjects’ choices, and estimated 

model evidence using the Watanabe-Akaike Information Criterion (WAIC), which provides a 

metric of model goodness, by assessing fit to the data while penalizing for model complexity. 

This simple model M1 included a learning rate (ε0) and feedback sensitivity parameter (ρ; 

WAICM1=35368; R2=33.2%). Stepwise addition of the Go bias parameter (b; M2), modelling a 

non-selective tendency towards Go responses, improved model fit (WAICM2=34769; R2=34.7%). 

Addition of the Pavlovian response bias parameter (π; M3a; WAICM3a=33703; R2=37.3%), and 

instrumental learning bias parameter (κ; M3b; WAICM3b=34261; R2=36.0%) further improved 

WAIC, indicating that Go vs. NoGo responding was differentially influenced by cue and outcome 

valences beyond that explained by simple motor biases or instrumental learning alone. The 

model that best explained the task performance included both the Pavlovian response bias 

and instrumental learning bias parameter (M3c; WAICM3c=33574; R2=37.6%; Figure 2). In other 

words, cue and outcome valence biased behavioural activation in a complementary fashion 

through instantaneous, global activation and experience-dependent selective learning, 

respectively. See Box 1 for an overview of the model equations.

In the winning model M3c, the Pavlovian bias estimates were positive at the group-level 

(95.5% group-level samples>0), indicating that Win cues globally promoted Go responding, 

while Avoid cues globally suppressed Go responding. The instrumental learning bias estimates 

were positive as well (100% group-level samples>0), indicating that reward enhanced the 

selective learning of Go responses (evidenced by higher learning rates for rewarded Go 

responses; ε0+κ). Thus, subjects were more likely to repeat rewarded Go responses relative 

to rewarded NoGo responses. Conversely, punishment hampered the unlearning of NoGo 

responses (evidenced by lower learning rates for punished NoGo responses; ε0-κ). In other 

words, subjects were more likely to repeat punished NoGo responses relative to repeating 

punished Go responses. As reported previously, the Pavlovian bias parameter decreased when 

including the instrumental learning bias parameter (median [25-75 percentile] π for M3a: 

.6 [-.2 1.2]; for M3c: .4 [-.5 .9]), suggesting that variance corresponding to the instrumental 

learning bias would otherwise be attributed to the Pavlovian bias parameter. The impact 

of the Pavlovian response bias and instrumental learning bias on behaviour has distinct 

dynamics however(Swart et al., 2017); whereas the impact of the instrumental learning bias 

is experience-dependent and develops over time, the impact of the Pavlovian bias reduces 

as instrumental action values are learned. Altogether, we observed a clear influence of both 

cue and outcome valence in biasing instrumental responding, consistent with our prior report 

(Swart et al., 2017).
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Figure 2. Computational modelling of Pavlovian response bias and instrumental learning bias.
(a) Model evidence, relative to simplest model M1, favours M3c (marked by darkest colour). The simplest 
model M1 contains a feedback sensitivity (ρ) and learning rate (ε) parameter. Stepwise addition of the Go 
bias (b), Pavlovian bias (π), and instrumental learning bias (κ) parameter improves model fit. (b) Absolute 
post-hoc model fit. The model predictions of winning model M3c (black lines; shaded areas indicate 
standard error of the mean) capture the key features of the data (coloured lines); responses are learned 
(more Go responding for Go cues vs. NoGo cues) and a motivational bias (more Go responding for Win 
vs. Avoid cues). (c) Posterior densities of the winning model M3c. The group-level estimates are positive 
for the Go bias (100% samples>0), the Pavlovian bias (95.5% samples>0), and the instrumental learning 
bias (100% samples>0). (d) Subject-level parameter estimates of the winning model M3c. The feedback 
sensitivity and learning rate were strongly anti-correlated over subjects (R=-.77, p<.001), such that the 
impact of high feedback sensitivity was limited by a low learning rate. Subjects have increased learning 
rates for rewarded Go responses (ε0+κ) and decreased learning rates for punished NoGo responses (ε0-κ), 
which we refer to as the instrumental learning bias. Note that κ is added to ε0 prior to [0 1]-constraining, 
see S2 Text.
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Box 1. Overview of the behavioural computational models.
In all models, the probability of each response (a) is estimated based on computed action weights (w) 
using a softmax function (Eq. 1; Where t indicates the trial and s the state, i.e. the cue). The action weights 
are determined by the learned instrumental Q values (Eq. 2, where ε is the learning rate and ρ the feedback 
sensitivity) and by a non-selective Go bias (b) and Pavlovian response bias (π) from respectively M2 and 
M3a onwards. Static Pavlovian values (V) were modelled once the first reward/punishment outcome has 
been experienced (also see S2 Text). In M3b the instrumental learning bias (κ) is introduced (Eq. 4). M3c 
contained both the π and κ parameters. For an elaborate description of the computational models and 
parameter constraints, see S2 Text.

Midfrontal oscillatory theta power reflects Pavlovian conflict

After establishing the impact of both cue-driven (Pavlovian) and outcome-driven 

(instrumental learning) motivational biases, we set out to replicate the finding that 

midfrontal oscillatory activity in the theta frequency range (4-8Hz) relates to reducing the 

motivational biasing of action (Cavanagh et al., 2013). Moreover, the current paradigm 

allows us to address specifically whether the midfrontal cortex does so by modulating the 

Pavlovian response bias, the instrumental learning bias, or both.

We reasoned that if midfrontal oscillatory theta activity relates to modulating the 

Pavlovian response bias (Cavanagh et al., 2013), midfrontal theta power would increase 

for motivationally incongruent cues (Go-to-Avoid, NoGo-to-Win), compared to congruent 

cues (Go-to-Win, NoGo-to-Avoid). As midfrontal theta has been linked to a conflict-induced 

adjustment of the decision threshold, preventing impulsive responses (Cavanagh et al., 

2011; Cavanagh and Frank, 2014; Frank et al., 2015; Herz et al., 2016; Zavala et al., 2014), 

we further hypothesized that increases in midfrontal theta would be particularly evident 

when motivational conflict is correctly resolved. Put simply, we reasoned that a control-

related signal should prevail when control is successfully implemented. To this end, we 

specifically assessed correct trials in line with classic cognitive control studies (Cohen 

and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur et al., 2011; Pastötter et al., 

2013; van Driel et al., 2015) and report the analysis of incorrect trials in S7 Text. Time-wise 

permutation testing over our a priori midfrontal channels (see Methods), indeed revealed 

𝑝𝑝 𝑎𝑎! 𝑠𝑠! =  
exp (𝑤𝑤(𝑎𝑎!, 𝑠𝑠!))
exp (𝑤𝑤(𝑎𝑎′, 𝑠𝑠!))!!

Eq. 1 M1-3 

𝑄𝑄! 𝑎𝑎!, 𝑠𝑠! =  𝑄𝑄!!! 𝑎𝑎!, 𝑠𝑠! +  𝜀𝜀 𝜌𝜌𝜌𝜌! −  𝑄𝑄!!! 𝑎𝑎!, 𝑠𝑠! Eq. 2 M1-3 

𝑤𝑤 𝑎𝑎!, 𝑠𝑠! =  𝑞𝑞 𝑎𝑎!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏  𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝐺𝐺𝐺𝐺
𝑞𝑞 𝑎𝑎!, 𝑠𝑠!  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Eq. 3 M2(b only), M3a,c 

𝜀𝜀 =  
𝜀𝜀! + 𝜅𝜅 𝑖𝑖𝑖𝑖 𝑟𝑟! =  1 & 𝑎𝑎 = 𝑔𝑔𝑔𝑔
𝜀𝜀! − 𝜅𝜅  𝑖𝑖𝑖𝑖 𝑟𝑟! = −1 & 𝑎𝑎 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝜀𝜀!  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒        

 Eq. 4 M3b-c 
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a cue-locked time-window during which midfrontal theta power was significantly higher 

for motivationally incongruent relative to congruent cues (450ms - 650ms; p=.024; Figure 

3). Importantly, the significant time-window was prior to the average response time 

(mean=753ms; range=594-1077ms), as might be expected for a control-related signal. 

Corroborating these findings, response-locked permutation testing also indicated a pre-

response time-window (-826 to -150ms; p=.002; Figure 3) during which midfrontal theta 

power increased for Go-to-Avoid (incongruent) trials relative to Go-to-Win (congruent) 

trials. Moreover, these temporally specific cue-locked and response-locked enhancements 

of midfrontal theta for incongruent trials were not accompanied by any converse time 

points in which theta power showed the reverse effect (i.e., increases for congruent 

relative to incongruent). Altogether, we observed a clear midfrontal theta response to 

motivational conflict, where theta power increased prior to correctly responding, when 

cue valence was incongruent with the instrumental Go/NoGo requirements.

Recent theories suggest that the midfrontal cortex might be responsible for 

detection of conflict (Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur 

et al., 2011; Pastötter et al., 2013; van Driel et al., 2015) and signalling the need for control 

to downstream targets (other cortical and subcortical sites) (Cohen and Cavanagh, 2011; 

Cohen and Ridderinkhof, 2013; Nigbur et al., 2012; van Driel et al., 2015, 2012). Accordingly, 

we reasoned that if midfrontal theta power relates to the detection of Pavlovian-

instrumental conflict, the midfrontal theta signal would covary with the level of conflict. To 

this end, we assessed whether there was evidence for a trial-by-trial relation between the 

cue-locked midfrontal theta power and the level of Pavlovian-instrumental conflict. Here, 

we quantified Pavlovian-instrumental conflict by the extent to which instrumental values 

for NoGo responses were higher than those for Go responses on Win trials, and opposite 

for Avoid trials. Across subjects, this correlation was significantly positive (M3c: t29=2.9, 

p=.007; see Figure 3), supporting the trial-by-trial relation of midfrontal theta power and 

the level of motivational conflict. In sum, midfrontal theta power covaried with the level of 

motivational conflict, putatively reflecting the detection of conflict.

To assess whether the conflict-related midfrontal theta signal was indeed associated 

with reducing the motivational biasing of action, we extended our computational modelling 

approach. We employed the models developed by Cavanagh and colleagues (2013) to 

test the following differential mechanisms by which midfrontal theta might modulate 

the motivational biasing of action; We tested whether midfrontal theta power altered 

behaviour by modulating the Pavlovian response tendencies (M4a), the instrumental 

contribution (M4b), and/or the balance between the Pavlovian and instrumental 

contribution (M4c). Note that the current design is particularly well-suited to differentiate 

between these alternative mechanisms (M4a-c), as the multiple Go options enable us to 

disentangle whether frontal theta facilitates selection of particular instrumental actions or 
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rather reduces global Pavlovian (in)activation. Finally, we tested the alternative possibility 

that cue-related midfrontal theta power instead modulates the instrumental learning 

bias. That is, midfrontal theta power at the time of the decision might affect instrumental 

learning that takes place thereafter. We assessed this novel hypothesis in model M4d. See 

Box 2 for an overview of the equations for the EEG model extension.

Box 2. Behavioural computational models extended with trial-by-trial EEG data.
All EEG models were an extension of the behavioural model M3c, see Box 1. The β parameter scaled the 
impact of trial-by-trial theta power (θt) on the Pavlovian bias (Eq. 1; M4a), the instrumental contribution 
(Eq. 2; M4b), the balance between the Pavlovian and instrumental contribution (Eq. 3; M4c), or the 
instrumental learning bias (Eq. 4; M4d). In model M4c the Pavlovian bias parameter was replaced by τ, 
scaling the relative contribution of the Pavlovian and instrumental values. For model M5a-b, the trial-by-
trial theta power estimates in Eq. 1 were replaced by trial-by-trial estimates of midfrontal-lateral prefrontal 
phase synchrony (M5a) and midfrontal-contralateral motor phase synchrony (M5b). For an elaborate 
description of the computational models and parameter constraints, see S2 Text.

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! = 𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋 +  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑉𝑉 𝑠𝑠 + 𝑏𝑏
𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏

if conflict 
else 

Eq. 1 
(M4a) 

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! = 1 −  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏
𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 +  𝑏𝑏

𝑤𝑤 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠! = 1 −  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑄𝑄 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠!
𝑄𝑄 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠!

if conflict 
else 
if conflict 
else 

Eq. 2 
(M4b) 

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! = 1 − (τ +  𝛽𝛽 ∗ 𝜃𝜃! ) ∗ 𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + τ +  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑉𝑉 𝑠𝑠 + 𝑏𝑏
1 − τ ∗ 𝑄𝑄 𝐺𝐺𝑜𝑜!!, 𝑠𝑠! + τ ∗ 𝑉𝑉 𝑠𝑠 + 𝑏𝑏

𝑤𝑤 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠! = 1 − (τ +  𝛽𝛽 ∗ 𝜃𝜃! ) ∗ 𝑄𝑄 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠!
1 − τ ∗ 𝑄𝑄 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠!

if conflict 
else 
if conflict 
else 

Eq. 3 
(M4c) 

ε!"#$!%"% !" =
1 − 𝛽𝛽 ∗ 𝜃𝜃! ∗ (ε! + κ) + (𝛽𝛽 ∗ 𝜃𝜃!) ∗ ε!

ε! + κ
 

ε!"#$%!!" !"#" =
1 − 𝛽𝛽 ∗ 𝜃𝜃! ∗ (ε! − κ) + (𝛽𝛽 ∗ 𝜃𝜃!) ∗ ε!

ε! − κ
 

if conflict 
else 
if conflict 
else 

Eq. 4 
(M4d) 
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Figure 3. Cue-related midfrontal theta power.
(a) Left: Time-wise permutation testing reveals one cue-locked (450ms to 650ms) and response-
locked (-826ms to -150ms) time-window during which midfrontal theta power (4-8Hz) increased for 
motivationally incongruent trials (NoGo-to-Win, Go-to-Avoid) relative to congruent trials (Go-to-Win, 
NoGo-to-Avoid). *p<.05; **p<.01. Right: Cue-locked contrast of motivational conflict. Time-frequency 
plot for the midfrontal channels, with the resulting time-window indicated by the box. Topoplot for theta 
power in the resulting time-window with the significant (non-significant) a priori midfrontal channels 
indicated by white (grey) discs (post-hoc Bonferroni corrected alpha=.017). The a priori channels showing 
a significant cue-locked congruency effect were used in the computational models and served as seeds 
for the connectivity analyses. (b) Within-subject regression lines (coloured) of trial-by-trial midfrontal theta 
power and Pavlovian-instrumental conflict according to model M3c. Across subjects (black line), there is a 
positive association between the level of conflict and midfrontal theta power (p=.007), putatively reflecting 
the detection of the conflict. Midfrontal theta power did not significantly covary with trial number (p=.94), 
rendering a confound of trials on task unlikely. (c) Model evidence relative to winning behavioral model 
M3c. Addition of the βθ-power parameter improves model fit most when scaling the impact of theta power 
on the Pavlovian bias (M4a), rather than scaling the impact on the instrumental contribution (M4b), the 
balance between the Pavlovian and instrumental contribution (M4c), or the instrumental learning bias 
(M4d). The negative βθ-power parameter estimates indicate that the conflict-related increases in midfrontal 
theta power were associated with reduction of the Pavlovian response bias.

For model comparison, we re-fitted the winning base model M3c over the behavioural data 

of the subjects included in the EEG analyses (N=30; EEG data of 4 subjects contained excessive 
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noise), as model evidence can only be directly compared when estimated over identical data. 

When allowing midfrontal theta power to scale the impact of the Pavlovian bias, model evidence 

greatly increased (M4a; WAICM4a=28503; R2=40.5%), relative to the re-fitted base model M3c 

(WAICM3c,N=30=28785; R2=39.8%; Figure 3), indicating that trial-wise midfrontal theta values are 

informative about the modulation of Pavlovian biases over and above what could be inferred on 

average across trials. There was less evidence for midfrontal theta power scaling the impact of the 

instrumental action values (M4b; WAICM4b=28634; R2=40.1%) or the balance between the Pavlovian 

and instrumental contribution (M4c; WAICM4c=28781; R2=39.5%), although both models did better 

than base model M3c. Although the improvements in the R2 values might appear small, these 

improvements reflect the improvement for every subject on every trial. Additionally, the impact of 

the additional parameters in the EEG models is restricted as i) EEG data was rejected for trials with 

EEG artefacts and noise (~10% of trials), and ii) the EEG parameters are only modelled half the trials 

(i.e., incongruent cues). Model evidence hardly increased relative to M3c when midfrontal theta 

power was allowed to modulate the instrumental learning bias (M4d; WAICM4d=28763; R2=39.8%). 

Thus, computational modelling indeed implicated the conflict-related midfrontal theta signals in 

modulation of the motivational biasing of action, where the theta signals particularly scaled the 

Pavlovian response bias (M4a), rather than the instrumental learning bias (M4d).

In the winning model M4a, the impact of midfrontal theta power on the Pavlovian bias, as 

assessed by βθ-power, has negative group-level estimates (100% samples<0). These negative estimates 

indicate that midfrontal theta power relates to weaker impact of the Pavlovian response tendencies, 

such that higher levels of theta power are associated with better ability to resolve the Pavlovian 

conflict. Crucially, in model M4a midfrontal theta power reduces the Pavlovian response tendencies 

only under conflict between the Pavlovian response tendencies and the instrumental action values. 

Modelling an effect of midfrontal theta power on all trials (i.e., including motivationally congruent 

trials), greatly reduces model fit relative to M4a (ΔWAIC=+266), consistent with previous reports 

showing that midfrontal theta power relates to the decision threshold specifically on conflict trials 

(Cavanagh et al., 2011; Frank et al., 2015; Herz et al., 2016; Kelley et al., 2018; Zavala et al., 2014). 

Altogether, these results suggest that cue-related midfrontal theta power is associated with 

resolving Pavlovian-instrumental conflict, rather than promoting unbiased behaviour in general.

Although the cue-related midfrontal theta power was not linked to a modulation of the 

instrumental learning bias (M4d), theta power at the time of outcome, when reinforcement 

learning would occur, could in principle modulate the learning bias nonetheless. To this end, 

we next assessed whether feedback-related midfrontal theta power increased differentially 

following actions and outcomes that are consistent with instrumental learning biases. First, 

we determined the optimal time-window for feedback-related theta power by contrasting 

non-preferred outcomes (i.e. neutral outcomes for Win cues and punishment for Avoid cues) 

and preferred outcomes (i.e. reward for Win cues and neutral outcomes for Avoid cues). 

Time-wise permutation testing using the a priori midfrontal channels revealed one time-



106

CHAPTER 4

window during which midfrontal theta power was significantly higher for non-preferred than 

preferred outcomes (150 - 476ms; p=.002; Figure 4). We then assessed whether theta power 

in this time-window increased for the conditions where we observed biased learning (i.e. 

enhanced Go learning after reward and decreased NoGo unlearning after punishment, see 

Task performance). We did not observe a significant change in midfrontal theta power for 

the biased learning conditions (rewarded Go: ε0+κ, punished NoGo: ε0 - κ) relative to their 

unbiased counterparts (rewarded NoGo, punished Go; F1,28=1.1, p=.312, BF01=4.9). Alternatively, 

feedback-related midfrontal theta power might reflect the amount of instrumental learning 

that takes place. However, midfrontal theta power did not significantly differ for the conditions 

where we observed relatively stronger (rewarded Go, punished Go) vs. weaker (rewarded 

NoGo, punished NoGo) instrumental learning as observed at the behavioural level (F1,28=3.0, 

p=.095, BF01=3.1). Altogether, we observed well-established feedback-related modulations of 

midfrontal theta power (Cohen et al., 2011), yet this feedback-related theta power was not 

linked to biased instrumental learning of Go/NoGo responses. For full analysis of the feedback-

related theta power, including the neutral outcomes, we refer to S5 Text.

Figure 4. Feedback-related midfrontal theta power.
(a) Left: Time-wise permutation testing reveals one feedback-locked (150ms to 467ms) time-window 
during which midfrontal theta power increased for non-preferred relative to preferred outcomes. **p<.01. 
During this time-window, feedback-related theta power additionally increased more for Avoid than Win 
cues (p<.001; see S5 Text). Right: Contrast for non-preferred vs. preferred outcomes. The significant (non-
significant) a priori midfrontal channels are again indicated by white (grey) discs (post-hoc Bonferroni 
corrected alpha=.017). (b) Feedback-related theta power did not vary as a function of biased learning. 
Left: Midfrontal theta power within the resulting time-window did not significantly increase for the 
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conditions where we observed biased learning at the behavioural level (rewarded Go: ε0+κ, and punished 
NoGo: ε0 - κ) relative to their unbiased counterparts (rewarded NoGo and punished Go: ε0; BF01=4.9). Right: 
Midfrontal theta power also did not significantly vary as a function of relative magnitude of instrumental 
learning. Here, we contrasted rewarded Go responses (enhanced learning; ε0+κ) and punished Go with 
rewarded NoGo and punished NoGo (decreased learning; ε0 – κ; BF01=3.1).

Taken together, cue-related midfrontal theta power reflected the level of Pavlovian conflict 

and was associated with reducing the Pavlovian response tendencies, whereas outcome-

related midfrontal theta reflected simply feedback-valence effects and was unrelated to the 

biased Go/NoGo learning. Together, these results suggest that the midfrontal cortex detects 

Pavlovian conflict and reduces the motivational biasing of action by subsequently modulating 

the Pavlovian response tendencies, rather than the bias in instrumental learning.

Midfrontal network dynamics reflect the ability to overcome Pavlovian response biases
In the previous section, we established that midfrontal theta power was enhanced 

when motivationally driven Pavlovian response tendencies conflicted with instrumental 

requirements, that is, on incongruent trials. We also showed that stronger trial-by-trial 

midfrontal theta activity within these incongruent trials were associated with reduced impact 

of the Pavlovian bias parameter, rather than reduced instrumental learning biases. We next 

hypothesized that the midfrontal cortex might instantiate this reduction of the Pavlovian 

response tendencies through functional connectivity with a network of task-relevant regions, 

specifically the dorsolateral prefrontal and motor sites, given that increased theta phase 

synchrony of these regions to the midfrontal cortex has been linked to conflict processing 

(Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur et al., 2012; van Driel et 

al., 2015, 2012). Accordingly, we reasoned that motivational congruency would differentially 

affect the intersite phase synchrony (ISPS) between the midfrontal channels and nodes in 

this network. Crucially, midfrontal ISPS has been proposed to be activity-dependent (Cohen, 

2014), such that target sites become more responsive to the midfrontal signals when they 

are more active. Therefore, we disentangled the executing motor sites (i.e., contralateral Go 

responses) and the non-executing motor sites (i.e., ipsilateral Go responses and bilateral for 

NoGo responses) to account for putative differences in task activation due to the instantiation 

of overt motor responses.

Motivational congruency indeed modulated phase synchrony between the lateral 

prefrontal sites and the midfrontal cluster (F1,27=6.3, p=.018; Figure 5), such that theta-band 

phase synchrony was strengthened for incongruent relative to congruent cues. This congruency 

effect was not significantly driven by either Go cues (Go-to-Avoid>Go-to-Win: t28=-1.8, 

p=.089) or NoGo cues alone (NoGo-to-Win>NoGo-to-Avoid: t28=1.7, p=.093). The midfrontal-

prefrontal phase synchrony did not show significant main effects of Valence (F1,27=.2, p=.623), 

or Required Action (F1,27=.1, p=.730). Mirroring the midfrontal-prefrontal phase synchrony, 
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phase synchrony between the midfrontal and non-executing motor sites also increased during 

incongruent cues (F1,27=5.3, p=.029; Figure 5), in the absence of a main effect of Valence (F1,27<1, 

p=.856) and Required Action (F1,27=2.3, p=.144). The motor synchrony significantly increased 

with motivational conflict during NoGo trials (t28=2.5, p=.018, i.e. more phase synchrony on 

NoGo-to-Win than NoGo-to-Avoid trials), but non-significantly during the Go trials (t28<1, 

p=.359). Taken together, we observed clear conflict-related changes in midfrontal theta phase 

synchrony with both the lateral prefrontal sites and the non-executing motor sites.

Figure 5 (right page). Midfrontal intersite phase synchrony with lateral prefrontal and motor sites.
(a) Left: Midfrontal-lateral prefrontal phase synchrony increased for motivationally incongruent cues 
relative to congruent cues (p=.018). *p<.05; •p<.1. Middle: Topographic distribution of intersite phase 
synchrony (ISPS) for incongruent relative to congruent trials. The midfrontal channels showing the 
congruency effect of interest (see Figure 3) serve as t-weighted seed cluster (white discs). The lateral 
prefrontal and motor target channels are indicated with purple and blue discs respectively. Here we 
report the non-executing motor channels for simplicity (see S6 Text for an in depth discussion of the 
executing motor sites). Note that all subjects were right-handed, which might explain the somewhat 
lateralized intersite phase synchrony over the motor cortex. Right: Motor-midfrontal ISPS also increased 
with motivational incongruency (p=.029). (b) Model evidence relative to winning behavioural model 
M3c. Model evidence improves even further for the models where midfrontal-prefrontal (βISPS-PFC; M5a) or 
midfrontal-motor (βISPS-motor; M5b) phase synchrony scales the Pavlovian bias, compared to local, midfrontal 
theta power scaling the Pavlovian bias (βθ-power; M4a). The novel βISPS-PFC and βISPS-motor parameter estimates 
are negative (group-level both: 100%), indicating the synchrony relates to reduced Pavlovian biases. (c) 
Left: M5b model predictions (black lines; shaded areas indicate the standard error of the mean) resemble 
the behavioural data (coloured lines). The improvement in model predictions by the βISPS-motor parameter is 
particularly apparent for the NoGo cues. Right: Effect of midfrontal-motor connectivity on the Pavlovian 
contribution for all individuals (coloured lines). Across the group (black line), stronger midfrontal-motor 
connectivity reflects improved ability to reduce the Pavlovian contribution.

Surprisingly, we did not observe a significant congruency effect in the executing motor 

sites (t28=1.7, p=.097), which was, if anything, in the opposite direction (Congruency x Motor 

Execution: F1,27=10.2, p=.004; Valence x Required Action: F2,54=4.0, p=.024). The absence of 

significant congruency effects for the Go responses seems to be in line with the cue-locked 

midfrontal theta power observations, where the congruency effect also appears stronger for 

the NoGo than the Go cues (Figure 3A). For a more elaborate discussion of the motor ISPS 

results for the executing motor sites, we refer to S6 Text.

We next assessed whether the conflict-related changes in midfrontal theta phase 

synchrony with the lateral prefrontal (M5a) and motor (M5b) sites could also help to explain 

trial-by-trial choice variability related to reducing the Pavlovian response tendencies under 

motivational conflict. To this end, we adopted a similar modelling approach as above, but using 

trial-by-trial synchrony estimates instead of power to scale the Pavlovian bias. Before doing so, 

we confirmed that the single-trial estimates replicate the trial-averaged results reported above 

(S7 Text). We then tested whether midfrontal-prefrontal phase synchrony could scale the impact 

of the Pavlovian bias for both Go responses, whereas the midfrontal-motor phase synchrony 

could scale the Pavlovian impact for the contralateral Go response option. Model evidence
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increased for both intersite phase synchrony models, compared with the winning theta-power-

based model (M4a; WAICM4a=28503), where midfrontal-lateral prefrontal (WAICM5a=28477; 

R2=40.6%) and midfrontal-motor phase synchrony (WAICM5b=28425; R2=40.8%) modulated the 

Pavlovian bias. Although the trial-by-trial estimates of midfrontal theta power and intersite 

phase synchrony correlated positively (correlations ranging from +.12 to +.62; see S7 Text), 
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there was considerable unique variance within both measures (≥62%). Crucially, model evidence 

improved hardly any further when allowing the trial-by-trial estimates of midfrontal theta power 

to additionally modulate the Pavlovian bias in both synchrony models (both models: ΔWAIC=-7; 

WAICPFC=28470; WAICmotor=28418). In other words, while theta intersite phase synchrony explained 

behaviour over and above midfrontal theta power (ΔWAICPFC=-33; ΔWAICmotor=-85), midfrontal 

theta power barely explained any variance in addition to the phase synchrony. Thus, choices on 

incongruent trials were better explained when we allowed modulation of the Pavlovian response 

bias by intersite theta phase synchrony between the midfrontal and both task-relevant sites 

(lateral prefrontal and motor cluster). Alternative, target-dependent effects of intersite phase 

synchrony, such as lateral prefrontal synchrony modulating the goal representations and motor 

synchrony modulating motor excitability, reduced model evidence (S8 Text). See Figure 5 for 

model comparison and absolute model fit of the winning EEG model.

In this winning family of synchrony models, the novel β parameters, scaling the impact 

of the midfrontal-lateral prefrontal (βPFC; M5a) and midfrontal-motor (βmotor; M5b) phase 

synchrony on the Pavlovian bias, have negative group-level estimates (both: 100% samples<0). 

These negative estimates indicate that midfrontal synchrony with these task-relevant areas is 

related to weaker impact of the Pavlovian response tendencies, such that stronger connectivity 

is associated with better ability to resolve the Pavlovian conflict (Figure 5). Altogether, these 

results indicate that trial-by-trial theta-band synchrony within a network of task-relevant regions 

provides a better explanation of the ability to resolve Pavlovian conflict than theta power over 

the midfrontal cortex alone. This is in line with recent theories suggesting that the midfrontal 

cortex might be responsible for detection of the conflict and hence the need for control, whereas 

the implementation of control is signalled by synchrony with downstream targets (other cortical 

and subcortical sites) (Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur et al., 

2012; van Driel et al., 2015, 2012).

Discussion

Motivation is a key driver of our actions. Here, we showed that both Pavlovian and 

instrumental learning mechanisms contribute to the motivational biasing of action, coupling 

action to reward and inaction to punishment. Theta power increased over the midfrontal 

cortex particularly when the prepotent, Pavlovian response tendencies conflicted with 

the instrumental task requirements. This conflict-related theta signal was associated with 

reduced Pavlovian response biases, rather than with reduced instrumental learning biases or 

enhanced specific instrumental responses. This conflict-related theta signal was accompanied 

by phase synchronization of the lateral prefrontal and motor sites to the midfrontal site, and 

these network dynamics predicted resolution of the Pavlovian conflict over and above local, 

midfrontal power.



111

FRONTAL NETWORK DYNAMICS REFLECT REDUCTION OF MALADAPTIVE BIASES

4
Chapter

In the motivational Go/NoGo learning tasks, subjects needed to learn to make one of 

two active ‘Go’ responses or withhold responding (‘NoGo’) in order to obtain rewards or avoid 

punishments. We replicated our previous finding that reward cues promoted actions non-

selectively (Pavlovian response bias), while reward outcomes disproportionally facilitated credit 

assignment to selective actions (instrumental learning bias) (Swart et al., 2017). Conversely, 

punishment cues inhibited actions non-selectively, whereas punishment outcomes reduced 

credit assignment following inaction, thereby facilitating sustained inaction. For half the cues, 

these motivational biases were congruent with the instrumental requirements, whereas the 

other cues required a response that was incongruent with the motivational biases (i.e. NoGo to 

gain reward and Go to avoid punishment). Oscillatory theta power increased over midfrontal 

sites for the motivationally incongruent cues when subjects correctly performed instrumental 

responses, where higher levels of midfrontal theta power were associated with reduced 

motivational biasing of action, in line with work by Cavanagh and colleagues (Cavanagh et al., 

2013). Here we assessed whether the reduced motivational biasing was driven by modulation 

of the Pavlovian response bias and/or the instrumental learning bias. To this end, we optimized 

the experimental paradigm to disentangle non-selective Pavlovian response tendencies from 

selective instrumental action values by including multiple active ‘Go’ response options, and 

showed that midfrontal theta power was associated with weaker contribution of the Pavlovian 

system (cf. M4a) rather weaker instrumental learning biases (cf. M4d), or enhanced contribution 

of the instrumental system (cf. M4b-c). Finally, motor and lateral prefrontal sites synchronized 

to the midfrontal site in the theta frequency range, and these network dynamics explained the 

trial-by-trial reduction of the Pavlovian contribution over and above local, midfrontal theta 

power (cf. M5).

The midfrontal cortex has long been linked to performance monitoring and the detection 

of conflict, realizing the need of control (Botvinick et al., 2001; Carter et al., 1998; Cavanagh 

and Frank, 2014; Cohen, 2014) and increasing the expected value of control (Shenhav et al., 

2013). Detection of conflict has been suggested to be implemented as a coincidence detection 

in the midfrontal cortex, where co-activation of competing response alternatives putatively 

generates theta-band oscillations (Cohen, 2014). In line with these accounts, we observed 

that oscillatory theta power over the midfrontal cortex covaried with the trial-by-trial conflict 

between Pavlovian and instrumental controllers, which might reflect coincidence detection 

within the midfrontal cortex of the co-activation of the competing Pavlovian and instrumental 

response tendencies. Moreover, midfrontal theta power seemed to be particularly modulated 

by Pavlovian-instrumental conflict when subjects were able to perform the correct instrumental 

response (see S7 Text), suggesting that subjects might not have detected conflict between 

the Pavlovian and instrumental controllers on the incorrect trials, leaving them to follow their 

prepotent, Pavlovian response tendencies. Using computational model based analyses, we 

showed that these midfrontal theta signals were particularly predictive of the trial-by-trial 



112

CHAPTER 4

reduction of the Pavlovian response tendencies when Pavlovian and instrumental controllers 

conflicted (M4a). Note, however, that the midfrontal theta power did not seem to be a pure 

accuracy signal, since midfrontal theta power was less predictive of the specific instrumental 

action values (cf. M4b), most closely reflecting the correct responses. Furthermore, we did not 

observe a link between midfrontal theta power and the instrumental learning bias, which 

taken together suggests that the midfrontal cortex is not responsible for unbiased, normative 

behaviour per se, but rather detects conflict between competing response systems. The 

midfrontal theta signal is indeed often considered to be uninformative about what the resulting 

response should be, but rather conveys the signal that conflict resolution is needed (Cavanagh 

and Frank, 2014; Cohen, 2014). In other words, midfrontal theta power might signal conflict, 

potentially allowing for an increase in the decision threshold (Aron et al., 2016; Cavanagh et al., 

2011; Frank et al., 2015; Herz et al., 2016; Kelley et al., 2018; Wiecki and Frank, 2013; Zavala et 

al., 2014), and thereby overcoming the Pavlovian response bias, but without directly selecting 

an instrumental response. Although we link our work to previous studies demonstrating the 

relation between midfrontal theta power and the decision threshold (i.e., using drift diffusion 

models for two response options) (Cavanagh et al., 2011; Frank et al., 2015; Herz et al., 2016), 

generalizing classic response conflict to Pavlovian-instrumental conflict, we could not directly 

test this relation in the current study, as these drift diffusion models are not suited to assess 

more than two response options.

The classical performance monitoring theory proposed that the need for control 

is signalled to the dorsolateral prefrontal cortex, which will then implement the control 

(Botvinick et al., 2001). More recent work suggested that the midfrontal cortex functions as a 

hub and signals the need for control to a wider network, including the lateral prefrontal cortex, 

motor cortex, ventral striatum, and subthalamic nucleus, in order to increase the decision 

threshold (Cohen, 2011; Cohen and Cavanagh, 2011; Cohen and Ridderinkhof, 2013; Nigbur 

et al., 2012; van Driel et al., 2015, 2012). Instead of assuming that the midfrontal cortex knows 

which areas to send the information to, the theta signal might be conveyed to all nodes in 

the network, while only the active areas are susceptible for the midfrontal theta-band input 

(Cohen, 2014), giving rise to activity-dependent functional connectivity. Accordingly, control-

related functional connectivity has been observed between the midfrontal cortex and several 

target sites, depending on the task at hand (Cavanagh and Frank, 2014). Consistent with these 

theories, we observed a motivational conflict-related increase in phase synchrony between 

the midfrontal and motor sites, and between the midfrontal and lateral prefrontal sites. Note, 

however, that techniques with higher spatial resolution (e.g., fMRI) are needed to determine 

whether we can attribute the lateral prefrontal synchronization to the dorsolateral prefrontal 

cortex. Here, we reasoned that if control is instantiated by signalling the increased need for 

control to task-relevant sites (Cavanagh and Frank, 2014; Cohen, 2014), fluctuations in phase 

synchrony between the midfrontal and lateral prefrontal and motor sites would help to predict 
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the reduction of the Pavlovian contribution. These network dynamics indeed explained the 

reduction of the Pavlovian response tendencies over and above local, midfrontal theta power. 

Thus, stronger trial-by-trial midfrontal phase synchrony with the lateral prefrontal and motor sites 

predicted reduced Pavlovian response biases better than midfrontal theta power alone. It should 

be noted that, although the estimation of theta phase angles is orthogonal to the estimation of 

theta power, these estimations are not completely independent, that is, the phase estimation 

becomes more precise with more power. Yet, the intersite phase synchrony explains behavioural 

performance over and above local theta power, whereas adding power to the synchrony models 

hardly improves model fit. Thus, the distal phase synchrony could account for the variance 

explained by local power, while local power could not account for all variance explained by 

distal phase synchrony. Therefore, the synchrony results cannot purely be attributed to changes 

in power. Nevertheless, future studies could establish the contribution of network connectivity 

more independently by assessing connectivity measures that are independent of task-related 

local or network activation, such as structural or resting state connectivity.

It has been proposed that the conflict-related intersite phase synchronization would have 

differential computational effects depending on the function of the target circuit; the lateral 

prefrontal cortex might enhance the goal representations, whereas the motor cortex might 

increase the motor threshold (Cohen, 2014). Here, we did not observe evidence for these target-

dependent effects. Specifically, we tested with alternative models whether synchronization of 

the lateral prefrontal sites was predictive of enhanced goal-representations, i.e. instrumental 

action values, whereas synchronization of the motor sites was predictive of increased motor 

thresholds (S8 Text). These alternative models were inferior to models that implemented a direct 

modulation of the Pavlovian response bias, which might reflect the increased decision threshold 

enabling non-hardwired decision systems to take over. Altogether, these results seem to indicate 

that the theta-band network dynamics reflect the signalling of the need for control, rather than 

signalling what specific computations are required within the target sites in order to implement 

the control. The resulting local computations could differ between target regions nonetheless, 

but are not reflected in the theta frequency band.

Finally, we have demonstrated increased midfrontal theta power for motivationally 

incongruent cues and linked trial-by-trial midfrontal theta power to the level of Pavlovian-

instrumental conflict estimated from behaviour. However, cognitive factors other than conflict 

might also play a role during motivational incongruency. Midfrontal theta power has been 

linked to the more general notion of ‘cognitive control’ (Cavanagh and Frank, 2014), including 

for example conflict, novelty, punishment, error processing, and cognitive effort. While some 

factors (such as predicted response times and cue preferences) were orthogonal to motivational 

congruency in the current findings, we do not exclude the possibility that other factors (such as 

anxiety and cognitive effort allocation, which could be considered inherent to conflict resolution) 

might be important during motivational incongruency as well.
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To summarize, in this study we replicate previous findings that i) the well-established 

motivational biasing of action arises partly from cue-based Pavlovian response biasing, and 

partly from outcome-based instrumental learning biases (Swart et al., 2017), and that ii) 

oscillatory theta power over the midfrontal cortex is associated with reduced motivational 

biasing of action (Cavanagh et al., 2013). The midfrontal theta activity covaried with the level 

of conflict between Pavlovian and instrumental responses, putatively reflecting the detection 

of conflict, and was not linked to the instrumental learning biases. This conflict-related 

midfrontal signal was specifically associated with reduced prepotent, Pavlovian response 

tendencies, without selecting the specific instrumental response per se. Synchronization of 

the lateral prefrontal and motor sites to the midfrontal site predicted the reduced contribution 

of the Pavlovian system even better than the local, midfrontal activity, which highlights the 

importance of investigating distributed, network processing in addition to local processing. 

Altogether, these findings suggest that the midfrontal cortex signals conflict to the network 

of task-related regions in order to putatively increase the decision threshold, and thereby 

overcome the prepotent, Pavlovian responses, and allow for goal-directed behaviour.

Methods

Subjects.
Thirty-four healthy adults participated in the study (aged 18-30 years, mean (SD)=23.2 (3.6); 

27 females; right-handed; normal or corrected-to-normal vision). Exclusion criteria comprised 

a history of neurological or psychiatric disorders, use of psychotropic drugs, pregnancy, 

claustrophobia, and colour-blindness. Subjects signed informed consent prior to participation 

and received a financial compensation or study credits upon completion of the experiment. 

EEG data of four subjects were excluded due to excessive muscle artefacts in the EEG signal 

(see EEG data acquisition and preprocessing). All procedures were approved by the local 

ethics committee (CMO / METC Arnhem Nijmegen: CMO2014/288) and in accordance with the 

Helsinki Declaration of 1975.

Motivational Go/NoGo learning task.
We employed a motivational Go/NoGo learning task with multiple active response options 

(Swart et al., 2017) to dissociate non-selective Pavlovian activation from biased instrumental 

learning of selective responses. In this learning task, subjects need to learn to make Go or 

NoGo responses to maximize rewards for Win cues and minimize punishments for Avoid cues 

(Figure 1).

Trials start with presentation of a gem-shaped cue (1300ms), followed by a fixation cross 

(700ms), and feedback (1000ms). Four cues are followed by reward or neutral outcomes (Win 

cues), and four cues by punishment or neutral outcomes (Avoid cues). During cue presentation, 
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subjects make a button press with the left hand (Go-left) or right hand (Go-right), or withhold 

from responding (NoGo). Only one of these response options is considered correct per cue, and 

based on the response, subjects receive feedback. Correct responses are followed by a reward 

(Win cues) and a neutral outcome (Avoid cues) 80% of the time, and by a neutral outcome (Win 

cues) and a punishment (Avoid cues) otherwise. For incorrect responses, these probabilities 

are reversed. Based on the observed outcomes, subjects need to learn the optimal responses 

by trial-and-error. Trials end with an inter-trial interval (ITI), varying from 1000 to 1750ms in 

steps of 250ms.

Subjects are informed that i) each cue can be followed by either reward or punishment, 

ii) each cue has one optimal response, iii) feedback is probabilistic, and iv) the rewards and 

punishments are converted to a monetary bonus upon completion of the study. The monetary 

bonus ranged from 0 to 5 euro (mean=2.12, SD=1.70). In contrast to our previous study (Swart 

et al., 2017), cue valence is not instructed and can be learned from the feedback. In total, there 

are 8 cues with 40 trials per cue. After every 80 trials (~6min), subjects have a self-paced break. 

Each subject performed the task twice, using two independent cue sets. The order of the cue 

sets is counterbalanced, and cue identities are randomized. The second round of the task is 

followed by a forced-choice transfer phase (Cavanagh et al., 2013) (See S4 Text).

EEG data acquisition and preprocessing.
EEG data were acquired at 500Hz from 65 channels (using a Brain Products actiCAP system; 

http://brainproducts.com) placed according to the equidistant arrangement, under and 

above the left eye for vertical EOG, and lateral to the eyes for horizontal EOG. The ground was 

placed on the forehead and the left mastoid was used for online referencing. EEG data are 

preprocessed and analysed with the Fieldtrip software toolbox (Oostenveld et al., 2011) in 

MATLAB (The MathWorks). EEG data were re-referenced offline to the weighted average of the 

mastoids and the EEG signal of the reference electrode was recovered. Vertical and horizontal 

EOG electrodes were re-referenced into a bipolar montage. Data were high-pass filtered 

at 0.5Hz and epoched into segments starting 1.75s before cue onset and ending 1.5s after 

feedback offset. The epochs were made sufficiently long to avoid edge artefacts, resulting from 

time-frequency decomposition, in the critical times of interest. Epochs were linear baseline 

corrected using the 200ms prior to cue onset, and visually inspected for trial rejection. Trials 

were rejected when containing EMG or artefacts unrelated to brain activity, but not eye blinks. 

Four subjects had excessive EMG activity (>30% rejected trials) and were excluded from the 

EEG analyses. Of the remaining subjects, 1.7-23.6% of the trials were rejected (mean=10.5%). 

Independent component analysis (ICA) was performed over the EEG and vertical EOG data 

of the remaining epochs; components related to eye blinks or artefacts that were clearly 

distinguishable from brain activity were removed. One to five components were removed per 

subject (mean=2.5). Two subjects had one channel containing flat lines; these channels were 
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discarded and interpolated after ICA. Next, the EEG data were spatially filtered, using estimation 

of the surface Laplacian (Oostendorp and Van Oosterom, 1996; Perrin et al., 1989). The surface 

Laplacian filters out distant effects and accentuates local effects, thereby diminishing the effect of 

volume conduction on synchrony estimates (Srinivasan et al., 2007).

EEG time-frequency decomposition.
Cue- and response-locked time series were decomposed into their time-frequency (TF) 

representations using wavelet convolution. Here the time series are convolved with Morlet 

wavelets, i.e. sine waves convolved with a Gaussian, based on multiplication in the frequency 

domain. The frequencies ranged from 1 to 50Hz in 39 logarithmically spaced steps and the 

Gaussian width was fixed at 4 cycles. Wavelet convolution results in a complex signal from 

which power and phase are extracted for each TF point, down sampled to 40Hz. Condition 

specific power values were averaged over trials and dB baseline corrected using a condition 

averaged baseline condition (-250ms to -50ms relative to cue onset). Phase angles (φ) were 

used to compute intersite phase synchrony (ISPS), which is thought to reflect intersite functional 

connectivity (Fries, 2015; Siegel et al., 2012; van Driel et al., 2015). ISPS was computed for each

TF point in the theta frequency range (4-8Hz) as following: ISPS = | 1/N*∑_(n=1)^N▒〖e^i    | 

where N is the number of trials, i the complex operator, and j and k the seed and target channels. 

ISPS values are sensitive to the number of trials, and therefore we selected the same number of 

trials from each condition to compute ISPS. This trial selection was permuted 100 times, and ISPS 

values were averaged over permutations. Cells with fewer than 20 trials were discarded for the 

analysis, resulting in the exclusion of 2 subjects for this analysis. ISPS values can range from 0 (no 

phase synchrony) to 1 (identical phase angles), and were baseline transformed into percent signal 

change using a condition-averaged baseline (again -250ms to -50ms relative to cue onset).

For the single trial analyses, the Laplacian filtered EEG data were broadband filtered in the 

theta range (4-8Hz) and Hilbert transformed. Power time-series were extracted, z-transformed, 

averaged over the time-window, and t-weighted for the channels of interest (Figure 3: channel 1 

and 2; 450ms to 650ms cue-locked). The t-weighting was based on the main contrast (incongruent 

– congruent). Phase angles were extracted to compute phase synchrony between the midfrontal 

seed channels and motor and prefrontal target channels during the same time-window: ISPS =  

|1t*∑_(t=1)^T▒〖e^i φ  | Here, the seed channels were weighted identical to the power time-series, 

and the target channels were t-weighted by the corresponding main ISPS contrast (lateral prefrontal: 

Valence x Required Action; motor channels: Congruency x Motor Execution; Figure 5). The resulting 

power and ISPS values were inverse-transformed before use in the computational models.

EEG channel selection.
For all analyses we selected clusters of channels informed by prior work and fine-tuned the clusters 

in a data-driven manner (independent of the contrasts of interest) as scalp topographies can vary 
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the seed and target channels. ISPS values are sensitive to the number of trials, and therefore 
we selected the same number of trials from each condition to compute ISPS. This trial 
selection was permuted 100 times, and ISPS values were averaged over permutations. Cells 
with fewer than 20 trials were discarded for the analysis, resulting in the exclusion of 2 
subjects for this analysis. ISPS values can range from 0 (no phase synchrony) to 1 (identical 
phase angles), and were baseline transformed into percent signal change using a condition-
averaged baseline (again -250ms to -50ms relative to cue onset).  

For the single trial analyses, the Laplacian filtered EEG data were broadband filtered in the 
theta range (4-8Hz) and Hilbert transformed. Power time-series were extracted, z-
transformed, averaged over the time-window, and t-weighted for the channels of interest 
(Figure 3: channel 1 and 2; 450ms to 650ms cue-locked). The t-weighting was based on the 
main contrast (incongruent – congruent). Phase angles were extracted to compute phase 
synchrony between the midfrontal seed channels and motor and prefrontal target channels 

during the same time-window: ISPS = !
!
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weighted identical to the power time-series, and the target channels were t-weighted by the 
corresponding main ISPS contrast (lateral prefrontal: Valence x Required Action; motor 
channels: Congruency x Motor Execution; Figure 5). The resulting power and ISPS values 
were inverse-transformed before use in the computational models. 

 

EEG channel selection.  

For all analyses we selected clusters of channels informed by prior work and fine-tuned the 
clusters in a data-driven manner (independent of the contrasts of interest) as scalp 
topographies can vary considerably between subjects and studies. Note that we recorded 
EEG with an equidistant channel arrangement instead of the more commonly used 10-20 
arrangement. To assess midfrontal theta power we selected two central channels 
corresponding to Cz and FCz in the 10-20 arrangement, as these channels showed a robust 
modulation of midfrontal theta power to response conflict in previous work (Cavanagh et al., 
2014; van Driel et al., 2015). We then fine-tuned this midfrontal cluster based on the 
condition-averaged cue-locked data (orthogonal to the contrast of interest), by including one 
additional anterior channel, roughly corresponding to Fz (see Figure 6). With post-hoc t-tests, 
we assessed which of the channels contributed significantly to significant group-level cluster 
effects (Bonferroni corrected alpha=.017). We then combined these post-hoc significant 
channels using t-weighting based on the main contrast (incongruent – congruent; also see 
Statistical analysis), and entered the t-weighted trial-wise data in the computational models. 
To emphasize, the t-weighting was only performed after establishing the effect of interest at 
the group-level, and thus did not bias our results. We performed the t-weighting at the 
group-level rather than the subject-level to reduce proneness to noise and enhance 
generalizability. To assess phase synchronization of the lateral prefrontal cortex and motor 
cortex to the midfrontal cortex, we computed a t-weighted seed timeseries based on the 



117

FRONTAL NETWORK DYNAMICS REFLECT REDUCTION OF MALADAPTIVE BIASES

4
Chapter

considerably between subjects and studies. Note that we recorded EEG with an equidistant channel 

arrangement instead of the more commonly used 10-20 arrangement. To assess midfrontal theta 

power we selected two central channels corresponding to Cz and FCz in the 10-20 arrangement, 

as these channels showed a robust modulation of midfrontal theta power to response conflict in 

previous work (Cavanagh et al., 2014; van Driel et al., 2015). We then fine-tuned this midfrontal 

cluster based on the condition-averaged cue-locked data (orthogonal to the contrast of interest), 

by including one additional anterior channel, roughly corresponding to Fz (see Figure 6). With 

post-hoc t-tests, we assessed which of the channels contributed significantly to significant 

group-level cluster effects (Bonferroni corrected alpha=.017). We then combined these post-hoc 

significant channels using t-weighting based on the main contrast (incongruent – congruent; 

also see Statistical analysis), and entered the t-weighted trial-wise data in the computational 

models. To emphasize, the t-weighting was only performed after establishing the effect of interest 

at the group-level, and thus did not bias our results. We performed the t-weighting at the group-

level rather than the subject-level to reduce proneness to noise and enhance generalizability. To 

assess phase synchronization of the lateral prefrontal cortex and motor cortex to the midfrontal 

cortex, we computed a t-weighted seed timeseries based on the significant midfrontal channels. 

We selected the following target clusters: i) eight dorsolateral prefrontal channels, including the 

dorsolateral peaks observed in the condition averaged data and extended laterally to surround the 

channels F5/6 in the 10-20 EEG montage (traditionally considered dorsolateral prefrontal channels 

(Cavanagh et al., 2009; Cohen and Cavanagh, 2011; van de Vijver et al., 2011)), and ii) four left and 

four right motor channel, for which we observed a clear lateralization based on the response hand 

independent of cue valence. See Figure 6 for the channel selection.

Figure 6. Channel selection. 
Left: Topographic distribution of condition averaged theta power (4-8Hz). The three white discs indicate 
the midfrontal cluster. Right: Topographic distribution of intersite phase synchrony (ISPS) with the 
midfrontal channels serving as t-weighted seed. Only the two channels showing the effect of interest 
(see Figure 3) were included as seed channels. The lateral prefrontal target channels (purple discs) were 
selected based on the strongest condition averaged midfrontal phase synchrony and extended to include 
all channels surrounding F5/6 in the standard 10-20 montage, given that F5/6 are commonly assessed as 
dorsolateral prefrontal channels; the motor target channels (blue discs) were selected based on response 
lateralization (i.e. left – right responses). 
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Statistical analysis.
The behavioural data were analysed in line with Swart et al. (2017). We elaborate on the details 

of the statistical analyses and the computational models in S1 Text and S2 Text respectively.

To assess whether midfrontal theta power is related to reduced Pavlovian response 

biases, we analysed TF power for the midfrontal cluster and restricted the analysis to the 

frequency range of interest (4-8Hz) and to the response window, i.e. cue presentation. We 

employed a time-based permutation test (500 permutations) with the cue-locked, trial-

averaged midfrontal theta power as dependent variable and the within-subject factor 

Congruency (congruent vs. incongruent); the Go-to-Win and NoGo-to-Avoid cues are 

considered to be motivationally congruent, as the Pavlovian response tendencies are in line 

with the instrumental requirements, whereas the NoGo-to-Win and Go-to-Avoid cues are 

considered to be motivationally incongruent. With post-hoc t-tests, we assessed which of the 

three midfrontal channels contributed significantly to the resulting time-window (Bonferroni 

corrected alpha=.017). Given that i) midfrontal theta power is known to strongly increase 

after errors(Cavanagh et al., 2012; van Driel et al., 2012), and ii) errors are more prevalent on 

motivationally incongruent than congruent trials, we assessed correct trials only to minimize 

the influence of error processing on the midfrontal theta signal. We report the analysis of 

incorrect trials in S7 Text. We repeated the analysis for response-locked power (Go cues only).

To test whether midfrontal theta power might also be related to reduced instrumental 

learning biases, we assessed feedback-related midfrontal theta power, which has been linked 

to reinforcement learning (Cavanagh and Frank, 2014; van de Vijver et al., 2011). In parallel 

to the cue-locked analysis, we selected the same midfrontal cluster and frequency range (4-

8Hz) and restricted the analysis to the period of feedback presentation. To retrieve the time-

window related to feedback processing, we first employed a time-based permutation test (500 

permutations) with the feedback-locked, trial-averaged midfrontal theta power as dependent 

variable and the within-subject factor Outcome (Preferred vs. Non-preferred); reward following 

Win cues and neutral feedback following Avoid cues are considered to be preferred, whereas 

neutral feedback following Win cues and punishment following Avoid cues are considered to 

be non-preferred. Thus, the time-window resulting from this permutation test differentiated 

between the feedback. We then extracted power for the resulting TF window and contrasted 

the conditions with biased learning (enhanced learning for rewarded Go responses and 

decreased learning for punished NoGo responses) to their unbiased counterparts (rewarded 

NoGo and punished Go). Note that we only provide statistics for effects orthogonal to the main 

effect of Outcome, given that we selected the time-window based on the Outcome contrast, 

rendering statistics for this contrast invalid.

To assess phase synchronization of the lateral prefrontal cortex and motor cortex to the 

midfrontal cortex, we assessed the t-weighted phase synchronization between the midfrontal 

cluster and the lateral prefrontal and motor clusters. We extracted the ISPS values for the 
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significant time-window of the cue-locked permutation test using correct trials. We analysed 

ISPS using a repeated measures ANOVA with the Factors Valence (Win vs. Avoid cue) x Required 

Action (Go vs. NoGo) to assess if ISPS increased during motivationally incongruent cues. For 

the motor channels, we reasoned that ISPS might be differentially affected in the ‘executing’ 

motor cortex (i.e. contralateral to the Go response hand) relative to the ‘non-executing’ motor 

cortex (i.e. ipsilateral to the Go response hand). To elaborate, midfrontal functional connectivity 

is thought to be activity-dependent (Cohen, 2014), such that target sites become more 

susceptible to the midfrontal signals when they are more active. The motor cortex putatively 

becomes more activated during contralateral Go responses than during ipsilateral or NoGo 

responses. To this end, we split up the Go responses into contra- and ipsilateral, resulting in 

three levels for the factor Required Response (Gocontra/Goipsi/NoGobilateral). We then assessed for 

the significant Valence x Required Response interaction, whether this could be explained by 

an effect of motivational congruency in the non-executing motor channels (ipsilateral Go and 

bilateral for NoGo responses) vs. executing motor channels (contralateral Go).

Supplementary Files

S1 Text - Statistical analysis of behavioural data.
Behavioural data were analysed in line with Swart et al. (2017). In short, to assess the influence 

of motivational valence on behavioural activation, we first analysed Go vs. NoGo responses 

(irrespective of Go-left vs. Go-right) as a function of cue valence. Second, we tested whether 

motivational valence affected both correct and incorrect Go responses. To account for both 

between and within subject variability, choice data were analysed with logistic mixed-level 

models using the lme4 package in R (Bates et al., 2014; R Developement Core Team, 2015). These 

mixed models included the within subject factors Valence (Win vs. Avoid cue) and Required 

Action (Go vs. NoGo). The analysis of correct and incorrect Go responses included only Go cues, 

and hence only the factor Valence. Models included all main effects and interactions, and a full 

random effects structure (Barr, 2013; Barr et al., 2013). For completeness, we analysed reaction 

times (RTs) as a measure of behavioural vigour (see S3 Text).

S2 Text - Computational models.
First, we set out to replicate the finding that the Pavlovian response bias and instrumental 

learning bias contribute to the well-established asymmetric effects of valence on behavioural 

activation. To this end we employ the same computational modelling approach as previously 

(Swart et al., 2017). Using nested reinforcement learning models, we formally test whether i) 

cue valence biases behavioural activation in a Pavlovian manner, such that Win cues promote 

non-selective Go responses and Avoid cues promote NoGo responses, ii) outcome valence 

biases instrumental learning of (in)action; reward outcomes are more potent in reinforcing 
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active actions, whereas punishment outcomes are less potent in driving unlearning of holding 

back. Next, we extend the winning model with trial-by-trial estimates of theta power (model 

family M4), to assess whether these trial-by-trial neural measures increase our ability to explain 

behavioural responses. In particular, we assess whether on incongruent trials theta power is 

predictive of a) reduced Pavlovian response biases, b) enhanced impact of instrumental values, 

c) altered balance between these two systems, or d) reduced instrumental learning biases. 

Finally, we assess for the winning model, whether replacing local theta power with intersite 

phase synchrony in the theta range with putative target structures (lateral prefrontal cortex, 

motor cortex) further explains trial-by-trial behavioural responses (model family M5). Below 

we will describe the details of the models.

In all models, the probability of each response (a) is estimated based on computed action 

weights (w) using a softmax function:

Eq. 1

Where t indicates the trial and s the state (i.e. the cue). In the simplest model (M1) the action 

weights are fully determined by the learned values of each action (Q-values). Action values are 

updated with the Q-value based prediction error, i.e. the deviation of the observed outcome 

from the expected outcome (standard delta-rule learning (Sutton and Barto, 1998), see Eq. 2). 

M1 contains two free parameters: a learning rate (ε) scaling the prediction-error, and feedback 

sensitivity (ρ) scaling the outcome value:

Eq. 2

In Eq. 2, outcomes are reflected by r, where r ∈{-1,0,1}. As subjects can infer the cue valence 

upon the first reward or punishment outcome, neutral outcomes can only be evaluated as 

optimal (Avoid cues) or suboptimal (Win cues) after the first reward or punishment outcome. 

Accordingly, we tested whether subjects revalue previously experienced neutral outcomes as 

(sub)optimal upon the first reward or punishment. To this end, initial Q-values (Q0) are set to 

ρ*0.5 for Win cues and ρ*-0.5 for Avoid cues (i.e. the initial expected outcome is 0.5 for Win 

cues and -0.5 for Avoid cues), whereas these Q-values affect behaviour only once the cue 

valence is known (Eq. 3). Thus, as an example, if a subject made 5 NoGo responses to a cue 
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𝑝𝑝 𝑎𝑎! 𝑠𝑠! =  
exp (𝑤𝑤(𝑎𝑎!, 𝑠𝑠!))
exp (𝑤𝑤(𝑎𝑎′, 𝑠𝑠!))!!

Eq. 1 

𝑄𝑄! 𝑎𝑎!, 𝑠𝑠! =  𝑄𝑄!!! 𝑎𝑎!, 𝑠𝑠! + ε 𝜌𝜌𝜌𝜌! −  𝑄𝑄!!! 𝑎𝑎!, 𝑠𝑠! Eq. 2 

𝑞𝑞 𝑎𝑎!, 𝑠𝑠! =  𝑄𝑄 𝑎𝑎!, 𝑠𝑠!  𝑖𝑖𝑖𝑖 { r!…! }  ∋ 1
 0  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 Eq. 3 



121

FRONTAL NETWORK DYNAMICS REFLECT REDUCTION OF MALADAPTIVE BIASES

4
Chapter

of neutral outcomes (ΔWAIC=-37). Note that this revaluation adds a model-based component 

to our otherwise overall model-free learning system (cf. Eq.2).

Eq. 3
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for individual differences in the tendency to make Go responses independent of any cue. M3a 
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Eq. 4
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beforehand. Alternatively, Pavlovian values might have been learned using delta-rule learning 

(Guitart-Masip et al., 2012): . However, prediction-

error based learning of Pavlovian values greatly reduced model evidence (ΔWAIC=+323), and 

thus we proceeded with a static Pavlovian influence.

In M3b, we included an instrumental learning bias parameter (κ), to assess whether reward 

is more effective in reinforcing Go responses than NoGo responses, whereas punishment is 

less effective in unlearning NoGo responses than Go responses. In this model, κ increases the 

learning rate for rewarded Go responses and decreases the learning rate for punished NoGo 

responses:

Eq. 5

M3c included both the π and κ parameter to test whether the Pavlovian response bias and 
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learning (Guitart-Masip et al., 2012): 𝑉𝑉! 𝑠𝑠! =  𝑉𝑉!!! 𝑠𝑠! +  ε 𝑟𝑟! −  𝑉𝑉!!! 𝑠𝑠! . However, 

prediction-error based learning of Pavlovian values greatly reduced model evidence 
(ΔWAIC=+323), and thus we proceeded with a static Pavlovian influence.  

In M3b, we included an instrumental learning bias parameter (κ), to assess whether reward is 
more effective in reinforcing Go responses than NoGo responses, whereas punishment is less 
effective in unlearning NoGo responses than Go responses. In this model, κ increases the 
learning rate for rewarded Go responses and decreases the learning rate for punished NoGo 
responses: 
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M3c included both the π and κ parameter to test whether the Pavlovian response bias and 
instrumental learning bias complementarily contribute to the observed motivational bias in 
action. 

In the winning behavioural model (M3c), we tested whether midfrontal theta power covaried 
with the level of Pavlovian-instrumental conflict, which would be in line with the hypothesis 
that the midfrontal cortex is involved in the detection of motivational conflict. We computed 
the level of conflict as the difference in Q-values for the Pavlovian congruent versus 
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M3c included both the π and κ parameter to test whether the Pavlovian response bias and 
instrumental learning bias complementarily contribute to the observed motivational bias in 
action. 

In the winning behavioural model (M3c), we tested whether midfrontal theta power covaried 
with the level of Pavlovian-instrumental conflict, which would be in line with the hypothesis 
that the midfrontal cortex is involved in the detection of motivational conflict. We computed 
the level of conflict as the difference in Q-values for the Pavlovian congruent versus 
incongruent responses. Thus, motivational conflict was computed as Qnogo - mean(Qgo) for 
Win cues, and as mean(Qgo) - Qnogo for Avoid cues.  

After establishing the contribution of the cue- and outcome-based motivational biases, we 
continued our computational modelling approach to assess the functional role of cue-locked 
midfrontal theta power in overcoming the motivational biases. We used competing models 
(M4a-d; cf. Cavanagh et al., 2013) to assess the potential mechanisms by which the midfrontal 
cortex might help to overcome the motivational biases. In these models, we quantified the 
impact of trial-by-trial estimates of midfrontal theta power (𝜃𝜃!). The extended EEG models 
were estimated for all subjects that were included in the EEG analyses (i.e. excluding 4 
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M3c included both the π and κ parameter to test whether the Pavlovian response bias and 
instrumental learning bias complementarily contribute to the observed motivational bias in 
action. 

In the winning behavioural model (M3c), we tested whether midfrontal theta power covaried 
with the level of Pavlovian-instrumental conflict, which would be in line with the hypothesis 
that the midfrontal cortex is involved in the detection of motivational conflict. We computed 
the level of conflict as the difference in Q-values for the Pavlovian congruent versus 
incongruent responses. Thus, motivational conflict was computed as Qnogo - mean(Qgo) for 
Win cues, and as mean(Qgo) - Qnogo for Avoid cues.  

After establishing the contribution of the cue- and outcome-based motivational biases, we 
continued our computational modelling approach to assess the functional role of cue-locked 
midfrontal theta power in overcoming the motivational biases. We used competing models 
(M4a-d; cf. Cavanagh et al., 2013) to assess the potential mechanisms by which the midfrontal 
cortex might help to overcome the motivational biases. In these models, we quantified the 
impact of trial-by-trial estimates of midfrontal theta power (𝜃𝜃!). The extended EEG models 
were estimated for all subjects that were included in the EEG analyses (i.e. excluding 4 
subjects). To this end, we re-estimated the winning base model over the 30 EEG subjects, 
which left parameter inference unaffected, and used the resulting model evidence for model 
comparison in the EEG section.  
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we continued our computational modelling approach to assess the functional role of cue-

locked midfrontal theta power in overcoming the motivational biases. We used competing 

models (M4a-d; cf. Cavanagh et al., 2013) to assess the potential mechanisms by which the 

midfrontal cortex might help to overcome the motivational biases. In these models, we 

quantified the impact of trial-by-trial estimates of midfrontal theta power (θt). The extended 

EEG models were estimated for all subjects that were included in the EEG analyses (i.e. 

excluding 4 subjects). To this end, we re-estimated the winning base model over the 30 EEG 

subjects, which left parameter inference unaffected, and used the resulting model evidence 

for model comparison in the EEG section.

In model M4a we tested whether midfrontal theta power relates to modulation of the 

impact of the Pavlovian bias on behavior:

Eq. 6

Here, the β parameter scales the impact of the midfrontal theta estimates on the Pavlovian 

response tendencies. Positive β estimates indicate that midfrontal theta power enhances the 

Pavlovian response tendencies, while negative β estimates reduce the Pavlovian response 

tendencies. Theta power only scales the impact of the Pavlovian bias on conflict trials (NoGo-

to-Win, Go-to-Avoid), in line with previous report (Cavanagh et al., 2013).

In M4b we tested whether midfrontal theta power relates to modulation of the 

instrumental contribution. Here, the β parameter allows midfrontal theta estimates to scale 

the impact of the instrumental Q-values on the action weights:

Eq. 7

In M4c we tested whether midfrontal theta power relates to modulation of the relative balance 

between the Pavlovian and instrumental control systems, using a Pavlovian-instrumental 

trade-off parameter τ instead of the Pavlovian bias parameter π. The β parameter allows 

midfrontal theta estimates to shift the balance between Pavlovian versus instrumental control:

Eq. 8

The models M4a-c assess the mechanisms proposed by Cavanagh et al. (2013), and here we 

can optimally disentangle the Pavlovian and instrumental control systems due to the multiple 

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! =  𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋 +  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑉𝑉 𝑠𝑠 + 𝑏𝑏  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Eq. 6 

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! =  1 −  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏     𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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𝑤𝑤 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠! =  1 −  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑄𝑄 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠!  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑄𝑄 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!, 𝑠𝑠!  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Eq. 7 

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! = 1 − (τ +  𝛽𝛽 ∗ 𝜃𝜃! ) ∗ 𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + τ +  𝛽𝛽 ∗ 𝜃𝜃! ∗ 𝑉𝑉 𝑠𝑠 + 𝑏𝑏  𝑖𝑖𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1 − τ ∗ 𝑄𝑄 𝐺𝐺𝑜𝑜!!, 𝑠𝑠! + τ ∗ 𝑉𝑉 𝑠𝑠 + 𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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Go response options. Furthermore, in our previous work we established that motivational 

biases arise not only from cue-based Pavlovian mechanisms, but also from biased instrumental 

learning. We replicated this finding here showing the superiority of model M3c. This suggests 

that there is also a fourth mechanism by which midfrontal cortical control may help to respond 

correctly when Pavlovian and instrumental controllers conflict, namely that midfrontal theta 

power relates to reducing the instrumental learning bias. We test this hypothesis in model 

M4d, by allowing mid-frontal theta power to scale the motivational bias in learning rates:

   

Eq. 9

In contrast to M4a-c, here the β parameter was [0 1] constrained, such that the biased learning 

rates (εrewarded Go) and εpunished NoGo) could regress towards the unbiased learning rate (ε0), ensuring 

that the resulting learning rates could not go out of [0 1] bounds (see parameter constraints 

below). Accordingly, a positive β estimate indicates midfrontal theta power reduces the 

instrumental learning bias, rendering instrumental learning more unbiased.

Having established the computational mechanism through which midfrontal theta may 

reduce motivational biases (winning model M5a), we assessed whether this control might be 

instantiated by synchronization of the task-relevant regions to the midfrontal cortex. Current 

theories suggest that one role of the midfrontal cortex is to detect motivational conflict and 

‘alert’ task-relevant regions to implement this control, through synchronization of the task-

relevant regions to the midfrontal cortex (Cavanagh and Frank, 2014; Cohen and Cavanagh, 

2011). These ideas suggest that perhaps the degree of synchronization with task-relevant 

regions, rather than local power, would be better predictors of the ability to reduce motivational 

biases. To this end, we assessed whether theta phase synchronization between midfrontal 

channels and the bilateral prefrontal channels (ISPSPFC, M5a) or the contralateral motor channels 

(ISPSmotor-contra, M5b) scaled the Pavlovian bias, and explained behavior better than midfrontal 

theta power. Accordingly, we replaced θt in Eq. 6 with trial-by-trial phase synchrony in the theta 

band of midfrontal to lateral prefrontal and contralateral motor channels.

We used a sampling method for hierarchical Bayesian estimation of group-level and 

subject-level parameters. The group-level parameters (X) serve as priors for the individual-level 

parameters (x), such that x ~ Ɲ(X,σ). The hyperpriors for σ are specified by a half-Cauchy (Gelman, 

2006) with a scale of 2. The hyperpriors for X are centered around 0 and weakly informative: 

Xε,κ ~ Ɲ(0,2), Xρ,b,π,β ~ Ɲ(0,3). All parameters are unconstrained, with the exception of ρ (positivity 

constraint implemented using an exponential transform), ε ([0 1] constraint implemented with 

   ε!"#$!%"% !" =  1 − 𝛽𝛽 ∗ 𝜃𝜃! ∗ (ε! + κ) + (𝛽𝛽 ∗ 𝜃𝜃!) ∗ ε!  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
ε! + κ  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

ε!"#$%!!! !"#" =  1 − 𝛽𝛽 ∗ 𝜃𝜃! ∗ (ε! − κ) + (𝛽𝛽 ∗ 𝜃𝜃!) ∗ ε!  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
ε! − κ  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Eq. 9 

ε =  
ε! = inv. logit ε

ε!"#$%&'( !"#" = inv. logit ε − κ  𝑖𝑖𝑖𝑖 𝜀𝜀! <  .5 
 ε!"#$!%"% !" =  ε! + ε! − ε!"#$%&'( !"#"  𝑖𝑖𝑖𝑖 𝜀𝜀! <  .5 

Eq. 10 
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an inverse logit transform), and β in M5d ([0 1] constraint; i.e. β could suppress, but not reverse, 

the learning bias). To ensure that the effect of κ on ε (Eq.5) was symmetrical in model space (i.e. 

after inverse logit transformation to ensure [0 1] constraint), ε was computed as:

Eq. 10

Model estimation was performed using Stan software in R (RStan)(Stan Development 

Team, 2016). Stan provides full Bayesian inference with Markov chain Monte Carlo (MCMC) 

sampling methods (Metropolis et al., 1953). The number of Markov chains was set at 4, with 200 

burn-in iterations and 1000 post burn-in iterations per chains (4000 total). Model convergence 

was considered when the potential scale reduction factor    
 
<1.1 for all parameters(Gelman and 

Rubin, 1992), and all models reached convergence accordingly. Model comparison was evaluated 

using the Watanabe-Akaike Information Criteria (WAIC)(Watanabe, 2010). WAIC is an estimate of 

the likelihood of the data given the model parameters, penalized for the effective number of 

parameters to adjust for overfitting. Lower (i.e. more negative) WAIC values indicate better model 

fit. As WAIC is reported on the deviance scale (Gelman et al., 2014), a difference in WAIC value of 

2–6 is considered positive evidence, 6–10 strong evidence, and >10 very strong evidence (Kass 

and Raftery, 1995). We additionally provide a measure of explained variance (R2) for the models, 

as R2 might be considered more intuitive. However, WAIC is the most appropriate measure to 

compare models as WAIC penalizes for increasing model complexity. Moreover, WAIC takes into 

account how much variance a parameter could explain (for example, while the Pavlovian bias 

impacts all trials, the EEG model parameters only have an impact on the incongruent trials and 

can thereby explain less variance). In contrast, the R2 values do not account for the number of 

parameters and the extent to which a parameter is restricted in explaining variance.

S3 Text - Reaction times.
For completeness, we analysed reaction times (RTs) as a measure of behavioural vigour. RTs 

were analysed with linear mixed-level models using the lme4 package in R (Bates et al., 2014; 

R Developement Core Team, 2015). First, we assessed RTs irrespective of accuracy, with a mixed 

model including the within subject factors Valence (Win vs. Avoid cue) and Required Action 

(Go vs. NoGo). Second, we assessed RTs for the Go cues as a function of accuracy. This mixed 

model included the within subject factors Valence (Win vs. Avoid cue) and Accuracy (correct vs. 

incorrect). RTs were ln-transformed to improve normality. Models included all main effects and 

interactions, and a full random effects structure (Barr, 2013; Barr et al., 2013).
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The response times echoed the effects on proportion of Go responses. Learning was 

evidenced by shorter RTs for Go than NoGo cues (X2
1=62.3, p<.001) and for correct relative to 

incorrect Go responses (X2
1=88.3, p<.001). Motivational biasing was also evident from RTs, as 

subjects responded faster to Win vs. Avoid cues (X2
1=98.6, p<.001) independent of the response 

requirements (X2
1<1, p=.979) or accuracy (X2

1=1.7, p=.198). Importantly, the effect of cue 

valence on RTs covaried with the effect on proportion of Go responses, such that subjects with 

a higher proportion of Go responses to Win cues also sped up more for Win cues (Rpearson=-.53, 

p=.001), suggesting that the same neural mechanisms underlying the motivational biases 

drove changes in both RT and choice.

S4 Text - Forced-choice transfer phase.
At the end of the learning task, subjects performed a forced choice transfer phase. In the transfer 

phase, cues from the last round appear on screen in pairs; subjects are requested to select 

the cue they found most rewarding. These explicit relative preferences provide a measure of 

the learned cue values. No feedback is presented at this stage, minimizing interference with 

the learned cue values. Cues are presented above and below the centre of the screen to be 

orthogonal to the left and right response requirements of the learning phase. All possible cue 

pairs are presented twice, with counterbalanced location, except for the pairs with cues from 

the same category (i.e. Go-to-Win/Go-to-Avoid/NoGo-to-Win/NoGo-to-Avoid). The transfer 

phase contained 48 trials in total.

All subjects indicated the Win cues as rewarding more often than the Avoid cues 

(t33=36.5, p<.001), confirming that subjects learned the cue values. On top of that, subjects also 

preferentially indicated the Go cues over the NoGo cues as more rewarding (t33=3.1, p=.004), 

even though the received outcomes did not differ significantly (t33=1.7, p=.106). Thus, the 

preference of Go cues did not seem to reflect higher outcomes associated with these cues per 

se. In other words, the subjective values were boosted for Go vs. NoGo cues, which could not 

solely be explained by differential outcomes.

S5 Text - Feedback-related midfrontal theta power.
In the main text, we addressed modulations of feedback-related midfrontal theta power as 

a function of the biased instrumental learning (i.e. enhanced Go learning after reward and 

hampered NoGo unlearning after punishment). Here, we report a more extensive analysis 

of feedback-related power using a repeated measures ANOVA with the Factors Outcome 

(Preferred vs. Non-preferred) x Valence (Win vs. Avoid cue) x Required Response (Go vs. NoGo). 

Independent of the biased learning conditions, we observed clear effects of cue valence, such 

that feedback-related midfrontal theta power increased for Avoid relative to Win cues (F1,29=35.6, 

p<.001). Additionally, the outcome effect (non-preferred vs. preferred outcomes) was stronger 

for the Avoid cues (Avoid cues: F1,28=24.2, p<.001; Outcome x Valence: F1,28=4.6, p=.042), though 
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also highly significant for the Win cues (Win cues: F1,28=11.9, p=.002). Interestingly, midfrontal 

theta power did not significantly differ for neutral outcomes following a Win vs. Avoid cue 

(F1,28=1.8, p=.189), despite their relative difference (i.e. non-preferred vs. preferred outcome). 

Thus, we observed well-established feedback-related modulations of midfrontal theta power 

(Cohen et al., 2011), yet this feedback-related theta power could not be linked to biased 

instrumental learning of Go/NoGo responses as reported in the main text.

S6 Text - Midfrontal-motor phase synchrony.
In the main text we reported our findings regarding midfrontal-motor phase synchrony. 

Specifically, we assessed whether midfrontal-motor ISPS was affected by motivational 

congruency, and whether this modulation depended on whether the motor site was 

associated with motor execution (contralateral Go) or no motor execution (ipsilateral Go or 

bilateral for NoGo). To elaborate, we reasoned that the motor cortex phase synchrony might 

behave differently for contra- and ipsilateral Go responses, as the contra- and ipsilateral motor 

cortex can be considered functionally different (i.e., the ‘executing’ vs. ‘non-executing’ motor 

site). Crucially, midfrontal functional connectivity has been proposed to be activity-dependent 

(Cohen, 2014), such that target sites become more responsive to the midfrontal signals when 

they are more active. Thus, executing and non-executing motor sites might differ in midfrontal-

motor phase synchrony due to differences in task activation. To be able to assess such 

lateralization, we adapted the experimental setup such that subjects now needed to respond 

with the left and right hand, whereas in our previous study subjects responded with the index 

and middle finger of one hand (Swart et al., 2017). Finally, we reasoned that the motor cortex 

during NoGo responses would be most comparable to the ipsilateral motor cortex during Go 

responses, as these sites did not instantiate an overt Go response, and therefore grouped these 

together as the non-executing motor sites.

Following this line of reasoning, we started off with a non-directional ANOVA with the factors 

Valence x Required Response (Gocontra / Goipsi / NoGobilateral), and after establishing a significant 

Valence x Required Response interaction (F2,54=4.0, p=.024), we continued with our planned 

contrast including the factors Congruence (congruent vs. incongruent) x Motor Execution 

(executing vs. non-executing) to assess whether the midfrontal-motor phase coherence showed 

a congruency effect for the executing and non-executing sites. Here we observed that ISPS 

with the non-executing motor increased with motivational incongruency (F1,27=5.3, p=.029), 

resembling the midfrontal-lateral prefrontal phase synchrony, whereas phase synchrony with 

the executing-motor cortex showed, if anything, a trend in the opposite direction (Congruency 

x Motor Execution: F1,27=10.2, p=.004); midfrontal-motorcontra ISPS was marginally higher for the 

Go-to-Win cues than the Go-to-Avoid cues (t28=1.7, p=.097). Thus, we observed that midfrontal-

motor phase synchrony increased during motivational conflict for the non-executing motor 

sites, but, if anything, decreased for the executing (contralateral) motor sites.
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The midfrontal-motor phase synchrony findings might be reconciled by considering 

activity-dependent functional connectivity. As mentioned above, it is thought that the 

midfrontal theta signals might be conveyed to all nodes in the network, whereas only active 

areas become susceptible to the midfrontal theta-band input (Cohen, 2014), giving rise 

to activity-dependent functional connectivity. As such, we do not need to assume that the 

midfrontal cortex “knows” to which areas to send the information in order to implement 

control. Accordingly, control-related functional connectivity has been observed between 

the midfrontal cortex and several target sites, depending on the task at hand (Cavanagh and 

Frank, 2014). Consistent with these theories, we also observed a motivational conflict-related 

increase in phase synchrony between the midfrontal and lateral prefrontal sites, and between 

the midfrontal and motor sites that did not instantiate an overt motor response. Surprisingly, 

however, we observed the opposite (non-significant) pattern for the motor sites contralateral 

to active ‘Go’ responses. Phase synchrony between the midfrontal and contralateral motor 

sites was marginally stronger in reward than punishment contexts, even though active ‘Go’ 

responding can be considered motivationally congruent with reward contexts. Although we 

acknowledge that this effect for the executing motor sites was not significant (and we should 

therefore be cautious to interpret this effect), we would nevertheless like to provide the 

following potential explanation for this surprising observation; That is, these findings could 

be reconciled by considering that reward cues facilitate behavioral activation (Dayan et al., 

2006; Guitart-Masip et al., 2014a; Niv et al., 2007) through activation of the basal ganglia ‘Go’-

pathways (Collins and Frank, 2014; Hernandez-Lopez et al., 2000, 1997), increasing activation 

in the motor cortex (Chiu et al., 2014). The enhanced (reward-related) activation might have 

made the contralateral motor cortex more susceptible to the midfrontal theta-band signals, 

even though the midfrontal sites displayed weaker theta-band activation during the Go-to-Win 

trials. Of course such reward-related activation might also hold for the non-executing motor 

sites, but could nevertheless be most pronounced for the motor cortex that instantiates an 

overt motor response. To summarize, midfrontal-motor phase synchrony significantly increased 

with motivational conflict in the non-executing motor sites, but marginally decreased in the 

contralateral motor sites, potentially due to enhanced susceptibility for midfrontal connectivity 

resulting from reward-related activation of the contralateral motor cortex.

S7 Text - Single trial power and intersite phase synchrony.
In the main text, we showed that motivational conflict modulated trial-averaged midfrontal 

theta power and intersite phase synchrony with motor and prefrontal sites. Here we assessed 

whether the single-trial estimates could capture the main conflict modulations as observed at 

the trial-averaged level, before using the single-trial estimates in the computational models. 

Single-trial power and intersite phase synchrony (ISPS) estimates were analysed using mixed-

model regression analyses. These models included the within subject factors Valence (Win vs. 
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Avoid) and Required Action (Go vs. NoGo) for the power and ISPSmidfrontal-prefrontal analysis. For the 

ISPSmidfrontal-motor analysis, we analysed the conflict modulation again as a function of executing 

vs. non-executing motor side. Accordingly, the model included the within subject factors 

Congruency (congruent vs. incongruent) and Motor Execution (executing vs. non-executing), 

where the effect of Congruency translates to the Valence x Required Action interaction in the 

other models. All models included a full random effects structure; the power and ISPS values 

were mean-corrected and inverse transformed to improve normality.

Results of the single-trial analysis of midfrontal theta power were in line with the trial-

averaged analyses. The single-trial power values increased under motivational conflict (X2
1=8.7, 

p=.003), in the absence of main effects of Valence (X2
1=2.7, p=.098) and Required Action 

(X2
1=1.3, p=.971). The modulation by valence was significant for the NoGo cues (X2

1=11.3, 

p<.001), and not for the Go cues (X2
1=.9, p=.348).

In the main analyses we excluded incorrect trials to minimize contamination by error-

related signals, since both conflict detection and error processing have been linked to increased 

midfrontal theta power (Cavanagh and Frank, 2014; Cohen, 2014). The conflict detection 

signals commonly peak prior to the response, while the error processing signals peak after 

the response (Cohen, 2014). Although our time-window of interest (450-650ms) precedes the 

average response time (mean=753ms; range=594-1077ms), the power estimates might capture 

error processing signals nonetheless due to the temporal smoothing that is inherent in time-

frequency analyses. We tested whether theta power increased on error trials, but observed 

the opposite pattern: the midfrontal theta power values increased for the correct trials relative 

to incorrect trials (X2
1=17.1, p<.001), speaking against the contamination by error processing. 

Furthermore, motivational conflict did not significantly modulate the power estimates on 

incorrect trials (X2
1=.2, p=.685), suggesting that midfrontal theta power particularly increases 

with motivational conflict when the conflict is correctly overcome. Note, however, that a mixed-

level model with the full interaction (Valence x Required Action x Accuracy) did not converge. 

This is likely due to the low error rate particularly on congruent trials, leaving this interaction 

underpowered. To nonetheless assess this interaction, we circumvent this convergence issue 

by testing this interaction on the trial-averaged data using repeated measures ANOVA. This 

ANOVA indicated a significant three-way interaction (Valence x Required Action x Accuracy: 

F1,26=6.6, p=.016), driven by a significant interaction for the correct trials (Valence x Required 

Action: F1,29=9.6, p=.004) and a non-significant interaction for the incorrect trials (Valence x 

Required Action: F1,26=1.2, p=.286). Three subjects lacked EEG data for the incorrect NoGo-

to-Avoid trials and were therefore not included in this analysis. Given the low error rate on 

the motivationally congruent trials for some subjects, these results should be interpreted 

with caution. Taken together, the single-trial power estimates showed the modulation by 

motivational conflict, particularly when the conflict was successfully overcome, and did not 

show an error-related increase. This pattern of results could suggest that subjects might not 
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have detected the motivational conflict on the incorrect trials, leaving them to follow their 

prepotent, Pavlovian response tendencies. Therefore, we included the single-trial power 

estimates of both correct and incorrect trials in the computational modelling section.

Motivational conflict also modulated midfrontal-prefrontal phase synchrony at the 

single-trial level, such that the phase synchrony estimates increased with motivational conflict 

(X2
1=5.4, p=.021). The phase synchrony modulation by motivational conflict showed only a 

significant simple effect for the NoGo cues (X2
1=8.5, p=.003), and not for the Go cues (Χ2

1=.3, 

p=.608). No other effects were significant (Valence: X2
1=3.5, p=.062; Required Action: X2

1<.1, 

p=.886).

The single-trial midfrontal-motor ISPS results again showed an effect of motivational 

conflict that depended on whether the motor site instantiated an overt Go response 

(Congruency x Motor Execution: X2
1=4.1, p=.044). Thus, the midfrontal-motor ISPS increased 

with motivational conflict in the non-executing motor site (i.e. ipsilateral to Go responses and 

bilateral for NoGo responses), but decreased with motivational conflict in the executing motor 

site (i.e. contralateral to Go responses), although both simple effects were non-significant (non-

executing: X2
1=1.8, p=.176; executing: X2

1=2.0, p=.158). Furthermore, single-trial midfrontal-

motor phase synchrony increased for Win relative to Avoid cues across responses (X2
1=4.1, 

p=.042). Single-trial midfrontal-motor phase synchrony did not significantly differ between 

the motor sites during NoGo responses and contralateral Go responses (X2
1=1.0, p=.329), or 

ipsilateral Go responses (X2
1=.2, p=.679). Altogether, the single-trial estimates for both power 

and intersite phase synchrony replicate the modulations by motivational conflict as observed 

at the trial-averaged level.

As we include the power and phase synchrony measures in competing computational 

models (family M4 and M5 respectively), we assessed how correlated the trial-by-trial estimates 

are, in order to assess whether there is sufficient unexplained variance between these measures. 

To this end, we computed the within-subject correlations between trial-by-trial midfrontal 

theta power and i) midfrontal-lateral prefrontal phase synchrony, and ii) midfrontal-motor 

phase synchrony per condition (see Fig S1). The average correlation between midfrontal theta 

power and midfrontal-lateral prefrontal phase synchrony was .38 (range: .22 to .62), and the 

average correlation for midfrontal theta power and midfrontal-motor phase synchrony was .32 

(range: .12 to .53). Thus, even for the highest observed correlation (R=+.62; R2=.38), there was 

still 62% unexplained variance between the power and phase synchrony measures. In other 

words, despite clear covariation between the power and phase synchrony measures, there was 

extensive unique variance.
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Fig S1. Correlations between single-trial midfrontal theta power and intersite phase synchrony.
(a) Correlations for trial-by-trial midfrontal theta power and midfrontal-lateral prefrontal phase synchrony 
per subject (black circles), ranging from +.22 to +.62, where the lowest observation of unexplained 
variance still reaches 62%. (b) Correlations for trial-by-trial midfrontal theta power and midfrontal-motor 
phase synchrony per subject, ranging from +.12 to +.53.

S8 Text - Computational modelling: potential alternative mechanisms related to intersite phase 
synchrony. 
In the analyses described in the main text, we assumed that the phase synchronization of the 

task-relevant clusters to the midfrontal cluster would impact the same system as local midfrontal 

theta power (M5). Alternatively, the phase synchronization might have target-dependent impact, 

where the lateral prefrontal synchrony might relate to the modulation of the goal representations 

(in this task, the instrumental action values), whereas midfrontal-motor synchrony might relate to 

modulation of the motor excitability. We tested these alternative mechanisms in a new set of models, 

M6. We used the same intersite synchrony measures, but now allowed the midfrontal-prefrontal 

synchrony to scale the impact of the instrumental controller (M6a; cf. Eq. 7) and midfrontal-motor 

synchrony to scale the contralateral action weight (M6b):

Model evidence reduced relative to the M5 models for these alternative synchrony models, where 

midfrontal-lateral prefrontal synchrony modulated the instrumental contribution (WAICM6a=28615), 

and midfrontal-motor synchrony modulated motor excitability (WAICM6b=28557). Altogether, model 

comparison favoured synchrony models where midfrontal-lateral prefrontal (WAICM5a=28477) and 

midfrontal-motor phase synchrony (WAICM5b=28425) modulated the Pavlovian bias. These findings 

are in line with the proposal that the midfrontal cortex signals the need to adjust the decision-

threshold to the task-related network, in order to prevent impulsive, Pavlovian responses.

𝑤𝑤 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! =  
𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏 +  𝛽𝛽 ∗ 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆!"#"$,!"#$%&  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑄𝑄 𝐺𝐺𝐺𝐺′!, 𝑠𝑠! + 𝜋𝜋𝜋𝜋 𝑠𝑠 + 𝑏𝑏  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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Abstract

The striatum has long been implicated in motivation, learning, and action. Recent theories 

have proposed that the striatum is particularly involved in the coupling of these processes, 

giving rise to motivational biases in the selection and learning of actions. Here we assess the 

causal role of the ventral striatum in the motivational biasing of action for the first time in 

humans by directly stimulating the nucleus accumbens with deep brain stimulation (DBS). 

Treatment-refractory obsessive-compulsive disorder patients (n=8) performed a motivational 

Go/NoGo task with concurrent EEG recordings. The subjects needed to learn to make Go or 

NoGo responses in order to win reward or avoid punishment, while DBS was switched ON 

vs. OFF in a cross-over within-subject design. As previously observed in healthy populations, 

performance was strongly affected by the cue valence, such that fewer and slower Go responses 

were made when avoiding punishment than when playing for reward. DBS attenuated the 

inhibitory influence of punishment cues on reaction times and marginally on the proportion 

Go responses when Go responses were required. For the Go cues where these Pavlovian 

response tendencies conflicted with the instrumental requirements, oscillatory theta (4-8Hz) 

activity increased over the midfrontal cortex. These putative conflict-related midfrontal theta 

responses were not significantly affected by DBS. Taken together, these results suggest that 

nucleus accumbens stimulation attenuates the motivational biasing of action, seemingly 

without affecting frontal control systems. These results causally implicate the human nucleus 

accumbens in the coupling of motivation and behavioural activation.

Introduction

The striatum has widely been implicated in a range of cognitive processes, namely motivation, 

learning, and action (Berridge and Robinson, 1998; Robbins and Everitt, 2007, 1996; Salamone 

et al., 2005). Neuropsychiatric disorders involving these processes have often been linked to 

altered striatal functioning, for example obsessive-compulsive disorder (OCD; Burguière et al., 

2015), Parkinson’s disease (Holthoff-Detto, 1997), and addiction (Pujara and Koenigs, 2014). In 

turn, treatment of these disorders regularly targets striatal functioning (Ahmari and Dougherty, 

2015; MacDonald et al., 2011; Stoessl, 2008). Recent theories have proposed that the striatum is 

particularly involved in the coupling of motivation, learning, and action, giving rise to motivational 

biases in the selection and learning of actions (Collins and Frank, 2014; Guitart-Masip et al., 2014a; 

Swart et al., 2017). Here, we set out to assess the causal role of the human ventral striatum in the 

motivational biasing of action by direct stimulation of the nucleus accumbens.

To elaborate, anticipated rewards tend to facilitate taking action, whereas anticipated 

losses tend to facilitate holding back (Dickinson and Balleine, 1994; Guitart-Masip et al., 2014a; 

Huys et al., 2011). Similar biases have also been observed for the learning of (in)action based 

on reward and punishment outcomes (Swart et al., 2018, 2017). These motivational biases in 
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action have been theorized to arise through dopamine function in the basal ganglia (Collins 

and Frank, 2014), where particularly the striatum might subserve the motivational biases via the 

direct and indirect dopaminergic pathways (Dickinson et al., 2000; Hebart and Gläscher, 2015; 

Lex and Hauber, 2008; Taylor and Robbins, 1986, 1984; Wyvell and Berridge, 2000). In short, the 

mesolimbic peaks in striatal dopamine release, elicited by reward cues (Cohen et al., 2012; Day 

et al., 2007; Matsumoto and Hikosaka, 2009; Tobler et al., 2005), potentiate the direct D1 (‘Go’) 

pathway (Hernandez-Lopez et al., 1997), thereby promoting behavioural activation (DeLong and 

Wichmann, 2007; Mink and Thach, 1991). Conversely, the mesolimbic dips in striatal dopamine 

release, elicited by punishment cues, are thought to potentiate the indirect D2 (‘NoGo’) pathway 

(Hernandez-Lopez et al., 2000), thereby promoting behavioural inhibition. In other words, the 

input to the striatum, which depends on the motivational valence, putatively modulates activity 

in the (in)direct pathways and in that way biases behavioural activation.

The striatal coupling of the valenced input to the action-modulating output leads to our 

first prediction that dissociating the striatal in- and output will attenuate the motivational biases 

in action. We will test this hypothesis using deep brain stimulation (DBS). The exact mechanisms 

of action of DBS are still highly debated and likely involve a complex interplay of both inhibitory 

and excitatory effects, both locally and network-wide (Chiken and Nambu, 2016). Crucially, 

however, is that DBS is thought to disrupt the ongoing neural communication within the target 

site by dissociating the neural input and output (Chiken and Nambu, 2016). Based on this 

disruptive effect, we hypothesized that DBS will reduce the coupling of motivationally-driven 

input and action-related output in the nucleus accumbens, thereby reducing the motivational 

biasing of behavioural activation.

The motivational biases have been suggested to reflect the statistics of our environment 

and therefore to be beneficial by reducing computational load (Dayan et al., 2006). Yet, at times 

these biases can conflict with the behaviour required by our current goals, for example during 

delayed gratification or active avoidance. At those times, such motivational conflict needs to be 

detected and signalled to the task-relevant regions in order to facilitate goal-directed behaviour 

(Cohen, 2014). The midfrontal cortex has been linked to the detection of motivational conflict 

(Cavanagh et al., 2013; Swart et al., 2018), as reflected by increased midfrontal oscillatory activity in 

the theta frequency range (4-8Hz)(Cavanagh et al., 2013; Swart et al., 2018). Given that midfrontal 

oscillatory activity also covaries with continuous measures of conflict (Cohen and Cavanagh, 

2011; Cohen and Donner, 2013; Swart et al., 2018), we secondly predicted that an attenuation 

of the motivational biases under DBS will consequently result in reduced conflict-related neural 

responses.

In this study, we assessed the effects of nucleus accumbens stimulation on the well-

established motivational biases in action and on corresponding conflict-related neural signatures. 

To this end, we employed DBS in the bilateral nucleus accumbens of 8 OCD patients who receive 

DBS as part of their treatment. The participants performed a motivational Go/NoGo learning 
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task with alternating DBS ON/OFF and concurrent surface EEG recordings. We set out to test 

the hypotheses that DBS of the nucleus accumbens i) attenuates the motivational biases in 

behavioural activation and ii) consequently attenuates the conflict-related midfrontal theta 

responses.

Materials and methods

Subjects
We assessed 8 native Spanish patients (aged 21-50 years; 3 women; 7 right-handed) with bilateral 

deep brain electrodes (Medtronic 3391) situated in the nucleus accumbens. The two most distal 

contacts of each electrode were positioned within the posterior part of the nucleus accumbens 

(also see Stimulation procedure) with the aid of a preoperative MR scan fused with stereotactic 

frame-based CT imaging using standard clinical procedures (Nachev et al., 2015). The patients 

received DBS as treatment for drug- and therapy-resistant obsessive-compulsive disorder 

and were assessed during their routine check-ups in the hospital. Our sample was limited by 

the number of chronic OCD-DBS patients under treatment at Hospital Clínico San Carlos. See 

Supplementary Table 1 for an overview of the clinical evaluations and demographics per patient. 

The patients had normal or corrected to normal vision and did not report colour blindness. All 

patients gave informed consent, performed the motivational Go/NoGo learning task (see below) 

and a classical Go/NoGo task (to be published elsewhere), and received a reimbursement of 

EUR30,- upon completion of the study. The study was approved by the local ethical committee 

(CEIC Hospital Clínico San Carlos 10/131). During the completion of this thesis chapter, we 

assessed one more patient and the data of this patient will be included in our final publication.

Motivational Go/NoGo learning task
We employed a motivational Go/NoGo learning task (Figure 1) (cf. Guitart-Masip et al., 2011; 

Swart et al., 2017) where the required instrumental response (Go vs. NoGo) is orthogonal to 

the cue valence (Win vs. Avoid). Accordingly, there are 4 cue types in total (Go-to-Win, Go-to-

Avoid, NoGo-to-Win, and NoGo-to-Avoid). Each trial starts with the presentation of a Win (green 

edge) or Avoid (red edge) cue. Subjects can press the spacebar (Go) or not (NoGo) during cue 

presentation and response-dependent feedback follows after a 0.5s fixation interval. Correct 

responses are followed by reward (‘+100’; Win cues) or neutral outcome (‘000’; Avoid cues) 70% 

of the time, and by neutral outcome (Win cues) and punishment (‘-100’; Avoid cues) otherwise. 

These probabilities are reversed for incorrect responses. Go responses are considered correct 

for the Go-to-Win and Go-to-Avoid cue, whereas NoGo responses are considered correct for the 

NoGo-to-Win and NoGo-to-Avoid cue. Subjects can learn the correct responses by trial-and-error 

based on the feedback. Trials end with a fixation inter-trial interval (ITI) ranging from 1.25 to 2s in 

steps of 0.25s, randomly sequenced.



141

DBS OF THE NACC RELEASES AVERSIVE INHIBITION OF BEHAVIOUR

5
Chapter

Figure 1. Motivational Go/NoGo task.
(a) Learning phase. Each trial starts with a Win (green edge) or Avoid (red edge) cue. During cue presentation, 
subjects can make a Go (press spacebar) or NoGo (not press) response. Correct responses are followed by 
reward (Win cues) and a neutral outcome (Avoid cues) in 70% of the times, and by a neutral outcome (Win 
cues) or punishment (Avoid cues) otherwise. For incorrect responses, these probabilities are reversed. 
Subjects should learn the correct responses by trial and error. Image adapted from (Swart et al., 2017). (b) 
The task contains 4 cue types; the Go-to-Win and Go-to-Avoid, for which the Go response is correct, and 
the NoGo-to-Win and NoGo-to-Avoid, for which the NoGo response is correct. (c) Transfer phase. Cues are 
presented in pairs and subjects are asked to select the most rewarding cue. (d) The learning phase was 
performed twice, using independent stimulus sets. Each part was divided into 3 blocks with self-paced 
breaks in between. Stimulation was interleaved ON and OFF, counter-balanced over parts and subjects. 

Subjects perform the task twice, with a new stimulus set for the second part. All stimuli 

have unique shapes and colours well distinguishable from the red and green edge. The 

stimuli colours and shapes are randomly assigned to the 4 different cue types. Each cue is 

presented 60 times in each part, resulting in a total of 480 trials. The order of cue presentation 

is pseudorandom, with cues repeated once at most. The main task lasted approximately 

40 minutes. Before start of the task, subjects are informed that i) each cue has one optimal 

response, ii) feedback is probabilistic, and iii) their wins and losses will be converted to a 

monetary bonus at the end of the experiment. Thus, we suggested a performance-dependent 

bonus to incentivize the patients, yet we disbursed a fixed amount of EUR30,- for ethical 

considerations (e.g., to prevent that more severely affected patients would receive a smaller 

reimbursement).

Upon completion of the main task, a short transfer phase follows (Cavanagh et al., 2013); 

cues from the second part are presented in pairs and subjects are asked to select the most 
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rewarding cue. Cues are paired with all other cues and all cue combinations are presented 8 

times, resulting in a total of 48 trials. Importantly, the cues are presented without the coloured 

edge to measure the learned stimulus values and minimize interference by the explicit cue 

valences. The cue pair remains on screen until the response, with a maximum of 3s, followed by 

an ITI of 0.5s. If the subject responds too slowly, a message indicates to respond faster and the 

missed trial is repeated at the end. The transfer phase takes approximately 3 minutes in total.

Stimulation procedure
We assessed instantaneous effects of electrical stimulation of the nucleus accumbens during 

task performance by alternating blocks with (ON) and without (OFF) bilateral stimulation (3.5V; 

130Hz; 60μs pulsewidth). We applied bipolar stimulation over the two nucleus accumbens 

contacts, with the most distal contact as cathode, in line with commonly used therapeutic 

settings (Benabid et al., 2009; Sturm et al., 2003) and previous reports (Nachev et al., 2015). 

Based on the stimulation parameters and electrode localization, the activated tissue was 

estimated using Lead-DBS (version 2.1; Horn and Kühn, 2015). See Figure 2 for the localization 

of the deep brain electrodes in MNI space and the estimated volumes of nucleus accumbens 

activation (VAT). Stimulation was switched off for at least two hours prior to testing and was 

switched ON/OFF one minute before start of each block. The stimulation order was blind to 

the subject, and counter-balanced across parts and subjects (Figure 1D). None of the patients 

could recall the employed stimulation order. The transfer phase was always OFF stimulation.

Figure 2 (right page). Localization of the left (top) and right (bottom) deep brain electrodes in MNI space. 
Volume of activated nucleus accumbens tissue (VAT) indicated per hemisphere for each patient/electrode. 
Throughout the manuscript we colour the individual subject data according to their average VAT. Nucleus 
accumbens and caudate are depicted according to the Harvard Oxford atlas (Desikan et al., 2006) in yellow 
and turquoise respectively. Volumes of activated tissue were estimated using Lead-DBS (Horn and Kühn, 
2015). See Supplementary Table 2 for the MNI coordinates per contact and Supplementary Table 3 for the 
estimated activation of surrounding subcortical structures.

Statistical analyses: Task performance
Here we set out to assess the influence of nucleus accumbens stimulation on the motivational 

biasing of behavioural activation. To this end, we analysed Go vs. NoGo responses as a measure 

of behavioural activation, and reaction times (RTs) as a complementary measure of behavioural 

vigour.

Choice data were analysed with a repeated measures ANOVA in SPSS. First, we addressed 

whether there was overall evidence for task learning and motivational biasing of action by 

assessing whether the proportion of Go responses varied as a function of the required Go/

NoGo action and of the cue valence. After establishing the presence of the standard task 

effects, we assessed whether DBS attenuated the valence effect on Go responses. Accordingly, 
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the ANOVA included the within subject factors Required Action (Go vs. NoGo), Valence (Win 

vs. Avoid cue), and DBS (ON vs. OFF). Given our small, yet highly unique sample, we focus on 

effect sizes in addition to statistical significance testing. We report partial eta squared (ηp
2) as a 

measure of effect size, where we interpret ηp
2 >.14 as large effects, ηp

2 >.06 as medium effects, 

and ηp
2 >.01 as small effects, in line with (Cohen, 1992, 1988).

RT data were analysed with linear mixed-level models using the lme4 package in R 

(Bates et al., 2014; R Developement Core Team, 2015). The mixed-level models account for 

both between and within subject variability, taking into account the number and consistency 

of RTs per subject. Although the choice data would ideally be analysed with logistic mixed-

level models as well, these models did not converge for the current sample (presumably due 

to the limited variability in binomial data on the one hand and a small sample size on the 

other hand). RTs<100ms were discarded from the analysis and RTs were inverse transformed 

to improve normality. We limited the RT analysis to correct responses (i.e. RTs on Go cues), to 

reduce the model’s effects structure and thereby increase statistical power, resulting in the 

within subject factors Valence (Win vs. Avoid cue) and DBS (ON vs. OFF). The mixed model 

included all main effects and interactions, and a full random effects structure (Barr, 2013; Barr 

et al., 2013). We estimated effect sizes for RTs based on the corresponding repeated measures 

ANOVA performed within SPSS as there is no clear consensus on the estimation of effect sizes 

for mixed-level models.

As mentioned above, the exact mechanisms of action of DBS are still highly debated, and 

likely involve a complex interplay of both inhibitory and excitatory effects, both locally and 

network-wide (Chiken and Nambu, 2016). Accordingly, it is unclear whether DBS in the nucleus 

accumbens will have an overall excitatory or inhibitory effect. However, we hypothesized that 

the disruptive effect of DBS on the ongoing striatal communication (Chiken and Nambu, 2016) 

will reduce the coupling of motivationally-driven input and action-related output, or in other 

words, will reduce the valence-specificity in Go responding and RTs. Thus, we hypothesized 

that disruption of the ongoing striatal communication with DBS would reduce the motivational 

biases, and therefore we assessed the DBS x Valence interactions with a one-sided test to 

increase the statistical power given our small sample. All one-sided tests are clearly indicated 

in the Results section. We exploratory assessed whether the DBS x Valence effect on p(Go) and 

RT covaries with i) the estimated volume of activated nucleus accumbens tissue by DBS (VAT) 

and ii) the reduction in OCD symptoms by chronic DBS (∆Y-BOCS; see Supplementary Table 

1). We report the Pearson coefficient for these correlations.

Finally, we analysed the relative cue preferences during the transfer phase to confirm 

that the subjects indeed preferred the Win cues over the Avoid cues. To this end, we analysed 

how often each cue was selected during the transfer phase relative to chance, using the 

within-subject factors Valence and Required Action. As we contrasted the choices against 

chance level, the model for the transfer choices did not include an intercept. One subject did 
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not complete the transfer phase due to technical problems, and therefore we excluded this 

subject from the analysis of the transfer phase.

EEG recording, pre-processing, and time-frequency decomposition
Surface EEG was recorded during task performance with 61 (n=5) or 96 (n=3) channels 

placed according to the 10-20 system. The ground was placed at the chest and the EEG was 

online referenced to the left earlobe. Channels containing flat lines or persistent artefacts 

were discarded. In the 61 channel configuration, EEG data was sampled at 1024Hz and 

horizontal bipolar EOG was recorded with 2 additional channels placed lateral to the eyes. In 

the 96 channel configuration, EEG data was sampled at 500Hz and discarded channels were 

interpolated using the disjoint EEG channels, after which only the 61 joint channels were 

selected for further analysis.

EEG data were re-referenced to the weighted average of the EEG channels. Next, the data 

were band-pass filtered (0.5-100Hz) to remove slow drifts and the high frequency signal directly 

resulting from DBS (130Hz; see Stimulation procedure). Continuous EEG data was epoched into 

segments ranging from -2.25s to 4.7s relative to cue onset. These wide segments were selected 

to avoid edge artefacts, resulting from time-frequency decomposition, in the relevant time 

period. The epochs were linear baseline corrected, using the 200ms period prior to cue onset 

as baseline. The resulting epochs were visually inspected and epochs containing artefacts and 

excessive EMG noise were removed. An independent component analysis (ICA) was performed 

over the remaining epochs and components related to eyeblinks and artefacts unrelated to 

brain activity (mean=3, range=1-6) were removed. For the 61 channel configuration, missing 

channels were interpolated following ICA (1 channel for 1 subject). Trials with persisting 

artefacts following ICA were rejected, resulting in a total of ~38 rejected trials on average per 

subject (mean=7.9%, range=2-15%). Finally, the surface Laplacian was estimated over the EEG 

data, to filter out distal effects due to volume conduction, i.e. to attenuate the EEG signal so 

that local effects are better represented in the data (Oostendorp and Van Oosterom, 1996).

The preprocessed time series were decomposed into their time-frequency representations 

with wavelet convolution. The wavelets ranged from 1-40Hz, in logarithmically spaced steps, 

with the width ranging from 3 cycles (lowest frequency) to 7 cycles (highest frequency). The 

time-frequency data were down-sampled to 40Hz. Cue- and response-locked power values 

were extracted, trial-averaged, and dB baseline corrected with a condition-averaged baseline 

ranging from -250ms to -50ms relative to cue onset.

Statistical analyses: EEG
After establishing the effects of DBS on the motivational biases, we assessed whether DBS 

affected the neural signatures related to the detection of motivational conflict. In our previous 

work (Swart et al., 2018), we showed that theta power (4-8Hz) over the midfrontal cortex 
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(channels Cz, FCz) increased with motivational conflict, specifically when subjects successfully 

suppressed the Pavlovian response tendencies and performed the correct instrumental 

response. Accordingly, we analysed trial-averaged oscillatory power in the theta frequency 

range (4-8Hz) over the midfrontal electrode cluster {Cz FCz} for correct trials. First, we contrasted 

cue- and response-locked theta power for motivationally incongruent vs. congruent cues and 

employed time-wise permutation tests. For the permutation tests, we i) tested which of the 

time points showed a significant increase in midfrontal theta power for the incongruent vs. 

congruent cues, ii) created a reference distribution by randomizing the condition labels (500 

permutations), and iii) tested the cluster size of significant time windows resulting from step 1 

against the permutation distribution created in step 2. Next, we contrasted the resulting time-

window for DBS ON vs. OFF using a t-test. Only conditions with ≥10 trials per condition per 

subject were included in the analysis. Given the low accuracy rate for the NoGo-to-Win trials 

(only 3 subjects had ≥10 correct trials) and the observation that the behavioural DBS effects 

appeared specific to the Go trials, we restricted our statistical analysis to the Go trials. Thus, 

we contrasted correct Go-to-Avoid (incongruent) with Go-to-Win (congruent) trials. Note that 

by contrasting the Go cues, we cannot disentangle congruency-related signals from valence-

related signals in the current study.

For the behavioural analyses we hypothesised that DBS would reduce the motivational 

biases in Go responding and RTs by directly modulating striatal processing (Statistical analyses: 

Task performance). Accordingly, we hypothesized that the reduced biases would result in 

reduced neural markers of conflict detection under DBS, i.e. weaker midfrontal theta power to 

motivationally incongruent cues. An alternative explanation for reduced motivational biases 

under DBS, however, could be that DBS distally enhanced frontal control systems, which would 

be reflected by enhanced midfrontal theta signals to motivationally incongruent cues. To be 

able to differentiate between these alternative explanations, we assessed the DBS effects on 

midfrontal theta power with two-sided tests.

Results

General task performance
To address whether standard task effects were present within the sample of OCD patients, we 

first analysed the proportion of Go responses and response times (RTs) of correct Go responses 

independent of DBS. The participants indeed adjusted their Go/NoGo responses to the action 

requirements (Required Action: F1,7=7.7, p=.028, ηp
2=.52), reflecting task learning (Figure 3). 

This action adjustment was marginally higher for Avoid (F1,7=11.5, p=.011, ηp
2=.62) than for 

Win cues (F1,7=2.1, p=.189, ηp
2=.23; Valence x Required Action: F1,7=4.8, p=.064, ηp

2=.409). Note, 

that the accuracy was relatively low for the NoGo-to-Win cues in particular (mean[SD] correct 

= 21.7% [29.2%]), consistent with previous reports showing poorest performance and greatest 
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variability on the NoGo-to-Win trials (e.g., Cavanagh et al., 2013). Orthogonal to the action 

requirements, cue valence strongly biased Go responding (Valence: F1,7=23.4, p=.002, ηp
2=.77), 

such that participants made more Go responses to Win than Avoid cues. Complementarily, 

the participants responded faster to Win than Avoid cues (Valence: X2
1=55.2, p<.001, ηp

2=.71). 

These increased and faster Go responses when playing for reward vs. avoiding punishment is 

what we refer to as the motivational bias. Taken together, the current participants exhibit the 

standard task effects as we and others have previously reported in healthy samples in similar 

tasks (Guitart-Masip et al., 2014a; Swart et al., 2018, 2017), namely adjustment of Go/NoGo 

responses to the action requirements and cue valence biasing the Go/NoGo responses and 

RTs.

Figure 3. General task performance collapsed over DBS ON/OFF. 
(a) Moving average of the proportion Go responses using a sliding window of 5 trials. Shaded areas 
represent the standard error of the mean (sem). The participants match their Go/NoGo responding 
particularly well to the action requirements on the congruent trials (i.e. Go-to-Win, NoGo-to-Avoid), 
whereas this action adjustment remains relatively poor on the incongruent NoGo-to-Win trials. (b) Average 
proportion of Go responses. Bars represent the group mean (±sem), and the coloured lines represent 
the individual participant data (coloured by the estimated volume of activated nucleus accumbens 
tissue, VAT). Participants made more Go responses for the Go than NoGo cues, indicative of task learning. 
Orthogonally, participants made more Go responses to Win than Avoid cues, reflecting the motivational 
bias. */*** indicates p-values smaller than .05/.001 respectively. (c) Average reaction time (RT) of correct 
Go responses. Participants made faster Go responses on the Go-to-Avoid than Go-to-Win trials (p<.001).

Before turning to the DBS effects, we analysed the choices in the transfer phase to assess 

whether the cue valences were learned adequately. In the transfer phase, cues were presented 

in pairs and participants were asked to select the most rewarding cue. All subjects selected win 

cues more often than avoid cues (Valence: F1,6=338.0, p<.001, ηp
2=.98). This preference for Win 

cues was most pronounced for the NoGo cues (Valence x Required Action: F1,6=24.1, p=.039, 

ηp
2=.54; NoGo cues: F1,6=316.2, p<.001, ηp

2=.981), yet clearly present for the Go cues as well (Go 

cues: F1,6=110.4, p<.001, ηp
2=.948). Thus, the explicit relative cue preferences well reflected the 

cue valences.
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Nucleus accumbens stimulation attenuates the motivational bias in behaviour
After having established the presence of the standard task effects, we assessed whether 

stimulation of the nucleus accumbens attenuates the motivational biasing of action. To this 

end, we assessed whether DBS diminished the observed valence effect in Go responding and 

RTs. DBS significantly reduced the valence effect for RTs (DBS x Valence: X2
1=3.1, p=.040, one-

sided, ηp
2=.31), such that subjects responded relatively faster to Avoid cues under DBS (Figure 

4). Thus, the subjects slowed down for Avoid cues relative to Win cues (see previous section), 

but to a lesser extent under DBS. One patient did not show this pattern for RTs, which was 

notably the patient with the smallest volume of activated nucleus accumbens tissue by DBS 

(VAT; Figure 4). DBS did not significantly alter RTs independent of the cue valence (DBS: X2
1<1, 

p=.749, ηp
2=.21).

Complementary to the RTs, DBS numerically attenuated the valence effect on the 

proportion Go responses (DBS x Valence: F1,7=1.1, p=.170, one-sided, ηp
2=.13). This medium-

sized attenuation of the motivational bias was marginally significant for the Go cues (F1,7=1.7, 

p=.058, one-sided, ηp
2=.20), such that DBS marginally increased Go responses to the Go-to-

Avoid vs. Go-to-Win cues. Two subjects did not show this pattern of Go responses, which 

were again the patients with the smallest VAT (Figure 4). The attenuation of the valence effect 

under DBS was non-significant for the NoGo cues (F1,7<1, p=.429, one-sided, ηp
2=.005). Yet, 

note that the three-way interaction (although of large effect size) did not reach significance 

(DBS x Valence x Required Action: F1,7=1.6, p=.240, ηp
2=.19). DBS did not significantly affect 

the proportion Go responses independent of the cue type (DBS: F1,7=1.6, p=.249, ηp
2=.19), or 

as a function of the required action in line with task learning (DBS x Required Action: F1,7=2.1, 

p=.190, ηp
2=.23). Taken together, we observed medium-large effect sizes of DBS attenuating 

the impact of cue valence, which was consistent across RTs and Go responding for the Go cues. 

Figure 4. DBS-induced Go responses and reaction times. 
(a) Moving average of the relative increase in the proportion Go responses under DBS. The differential 
effect of DBS on the Go-to-Win and Go-to-Avoid cues seems to arise particularly towards the end of the 
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experiment. (b) Under DBS, participants made marginally more Go responses for the Go-to-Avoid vs. Go-
to-Win cues in particular, in line with reduced motivational biasing of action (p=.058). Notably, the two 
subjects who did not show this pattern had the smallest volume of activated nucleus accumbens tissue 
(VAT). For exploratory purposes only, we report whether the DBS x Valence effect on p(Go) covaried with i) 
VAT and ii) the reduction in OCD symptoms by chronic DBS (∆Y-BOCS; see Supplementary Table 1), yet we 
emphasize that the sample size is too small for a reliable estimation of these correlations. The DBS-induced 
reduction in the motivational biasing of Go responses significantly covaried with VAT (R=.81, p=.014), such 
that patients with larger volume of activated nucleus accumbens tissue showed a greater reduction in the 
motivational biases (see inset). This correlation did not hold for other subcortical tissues (e.g., caudate; 
see Supplementary Table 2 for an overview; all p>.6), or for ∆Y-BOCS (R=-.31, p=.458). † indicates p<.1. (c) 
Participants also made faster Go responses for the Go-to-Avoid than Go-to-Win cues under DBS (p=.040), 
in line with reduced motivational biasing under DBS. The subject who did not show this pattern had 
again the smallest VAT. The DBS-induced reduction in the motivational biasing of response times did not 
significantly covary with VAT (R=.16, p=.702) or ∆Y-BOCS (R=-.56, p=.147).

Midfrontal theta responses to motivational conflict are unaffected by nucleus accumbens 
stimulation
After observing that DBS attenuated the impact of cue valence on behaviour (significantly 

for RTs and numerically for Go responses), we assessed whether DBS also affected the neural 

signatures related to the presence of motivational conflict, reflected in oscillatory theta power 

(4-8Hz) over the midfrontal cortex (Cavanagh et al., 2013; Swart et al., 2018). We focused 

on the correct trials as these midfrontal theta signals are known to particularly surface in 

subjects and trials where control is successfully implemented (Cavanagh et al., 2013; Swart 

et al., 2018). Given that i) the DBS effect was most pronounced on the Go trials, and ii) five 

subjects had an insufficient number (<10) of correct NoGo-to-Win trials, we restricted our 

statistical analyses to the correct Go trials and display the EEG data for the three subjects 

with sufficient (≥10) correct NoGo-to-Win trials in Supplementary Figure 1. Note that one 

subject did not have sufficient (<10) correct Go-to-Avoid trials and was discarded from the 

primary EEG analyses.

Before assessing the effects of DBS, we first contrasted the correct Go-to-Avoid 

(incongruent) and Go-to-Win (congruent) trials independent of DBS to assess whether the 

sample of OCD patients exhibited the previously observed conflict effect (Cavanagh et al., 

2013; Swart et al., 2018). We extracted oscillatory theta power for the midfrontal cluster 

and contrasted the Go trials using time-wise permutation testing. Midfrontal theta power 

significantly increased for the Go-to-Avoid trials relative to the Go-to-Win trials during one 

cue-locked time-window (275-475ms; p=.024; Figure 5A). The corresponding permutation 

test for the response-locked power also yielded a significant time-window (-1000 to 

-800ms, p=.048), yet these time points were too early to reflect a control-related signal, 

which commonly peak closer to the response. Given the average reaction time of ~.7s, this 

early condition effect might instead be driven by the RT difference for the Go-to-Win and 

Go-to-Avoid cues (i.e., capturing more pre- and post-baseline activity respectively). 
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Figure 5. Cue- and response-locked midfrontal oscillatory theta activity.
(a) Midfrontal theta power collapsed over DBS ON and OFF (Cz+FCz, 4-8Hz). Time-wise permutation 
testing reveals one cue-locked (275 to 475ms; p=.024) time window during which midfrontal theta power 
significantly increased for the Go-to-Avoid (incongruent) vs. Go-to-Win (congruent) trials. The response-
locked permutation test also yielded a significant response-locked time window (-1000 to -800ms, p=.048), 
yet this time window was too early to reflect a control-related signal, which commonly peaks closer to the 
response. Although the permutation test additionally indicated a time window closer to the response 
(-400 to -325ms), this window was not significant (p=.172). (b) Go-to-Avoid vs. Go-to-Win contrast for 
the midfrontal channels and resulting time window. The black frame indicates the time-frequency 
window displayed in the topoplot; the white discs indicate the midfrontal channels displayed in the time-
frequency plot. (c) Relative increase in midfrontal theta power under DBS. DBS did not significantly alter 
midfrontal theta power in the cue-locked time window across the group (p=.205), nor as a function of the 
volume of activated nucleus accumbens tissue (R=-.64, p=.125) or the behavioural DBS x Valence effect 
(p(Go): R=.25, p=.583; RT: R=.15, p=.757). (d) Relative increase in the Go-to-Avoid vs. Go-to-Win contrast 
under DBS. See Supplementary Figure 1 for topoplots of individual subjects.

The response-locked permutation test additionally indicated a time-window closer to 

the response (-400 to -325ms), yet this time-window was not significant (p=.172). Both the 

response- and cue-locked permutations tests did not indicate any converse time-windows 

in which midfrontal theta power was increased for the congruent Go-to-Win relative to the 

incongruent Go-to-Avoid cue. Taken together, the results were consistent with  a cue-locked 
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increase in midfrontal theta power to motivational conflict, in line with previous findings 

in healthy populations (Cavanagh et al., 2013; Swart et al., 2018). Note, however, that we 

could not disentangle the neural responses to motivational conflict and the cue valence in 

the current study as we only assessed the Go cues, yet the previous studies (Cavanagh et al., 

2013; Swart et al., 2018) linked the midfrontal theta signals to motivational conflict, rather 

than to cue valence.

After establishing the increase in cue-locked midfrontal theta power for the Go-to-

Avoid (incongruent) vs. Go-to-Win (congruent) cues, we extracted the power values for the 

resulting time-window and assessed the effect of DBS. DBS did not significantly attenuate 

the cue-locked midfrontal theta response to motivational incongruency across the group 

(t6=1.4, p=.205, ηp
2=.252; Figure 5C). There were also no significant correlations between the 

DBS effect on cue-locked midfrontal theta response and behavioural DBS x Valence effect 

(p(Go): R=.25, p=.583; RT: R=.15, p=.757) or the estimated impact of DBS on the nucleus 

accumbens (R=-.64, p=.125). We also did not observe a significant main effect of DBS in the 

time-windows of interest (t7=1.3, p=.249, ηp
2=.184), or during the baseline period (-250 to 

-50ms; t7=1.1, p=.296, ηp
2=.154). Altogether, these data suggest that the midfrontal theta 

signals to the incongruent Go-to-Avoid vs. congruent Go-to-Win cues were unaffected by 

nucleus accumbens DBS.

Discussion

Here we studied the effects of nucleus accumbens stimulation on the well-established 

motivational biases in action (Cools et al., 2011; Guitart-Masip et al., 2014a) and motivational 

conflict-related neural signatures (Cavanagh et al., 2013; Cavanagh and Frank, 2014; Cohen, 

2014; Swart et al., 2018). Cue valence had pronounced impact on the number of active Go 

responses and the associated reaction times, such that subjects made more and faster Go 

responses to reward (Win) cues than to punishment (Avoid) cues. When these response 

tendencies conflicted with instrumental requirements, midfrontal theta power increased 

when subjects made correct Go responses. DBS of the bilateral nucleus accumbens 

significantly attenuated the motivational bias in reaction times; subjects made relatively 

faster (correct) responses to the Avoid cues during DBS. This speeding of Go-to-Avoid 

responses was paralleled by a corresponding increase in the proportion of Go responses, 

yet this was only marginally significant for the Go cues. Intriguingly, an enhancing effect 

of DBS on the proportion of Go-to-Avoid responses did surface as a function of individual 

differences in the intensity of the stimulation, although clearly this between-subject effect 

has to be interpreted with caution given the small sample size. In contrast to these effects 

on behaviour, DBS of the bilateral nucleus accumbens left the midfrontal theta responses to 

motivational conflict unaffected.
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The attenuation of the motivational biases (during Go responses) by striatal 

DBS provides causal support for current views of basal ganglia functioning (Collins 

and Frank, 2014); Reward cues elicit peaks in mesolimbic dopamine release, which 

potentiate the striatal direct ‘Go’ pathway and thereby promote behavioural activation. 

Similarly, punishment cues elicit dips in mesolimbic dopamine release, potentiating 

the indirect NoGo pathway and promoting behavioural inaction. Put simply, the striatal 

input (depending on cue valence) biases the striatal output (determining behavioural 

activation). Accordingly, we hypothesised that disrupting the striatal input-output 

coupling with striatal DBS (Chiken and Nambu, 2016) would reduce the influence of cue 

valence on behavioural activation. In line with our hypothesis, the influence of the cue 

valence on reaction times was significantly reduced during striatal DBS. This reduced 

influence of cue valence was particularly pronounced on the Go-to-Avoid cues, where 

subjects OFF DBS slowed down relative to the Go-to-Win cues, but to a lesser extent 

ON DBS. We observed a similar marginal attenuation in the proportion of Go responses, 

where subjects OFF DBS reduced Go responding for the Go-to-Avoid cues relative to 

the Go-to-Win cues, and to a lesser extend ON DBS. Note, however, that the three-way 

interaction (DBS x Valence x Required Action) was not statistically significant across the 

patient group.

The DBS-induced disinhibition on Go cues is generally consistent with previous 

findings in the same sample of patients (Nachev et al., 2015), where nucleus accumbens 

DBS disinhibited the active selection of risky, yet optimal choice options. OFF DBS 

these patients avoided high-risk options and were biased towards actively selecting 

suboptimal, low-risk options instead. DBS reduced this risk-avoidance bias, enabling 

active selection of instrumental choice options. Together with the current pattern of 

results, these findings suggest that DBS of the nucleus accumbens might release aversive 

inhibition of active behaviour.

We hypothesized that if DBS reduced the motivational biasing of action, the neural 

responses to motivational conflict would also decrease. Particularly the midfrontal 

cortex has been linked to detection of conflict between cue-based, Pavlovian response 

biases and goal-directed, instrumental actions, in order to signal this conflict within the 

task-related network for the implementation of control (Cavanagh et al., 2013; Cavanagh 

and Frank, 2014; Cohen, 2014; Swart et al., 2018). In our sample, we could extract these 

conflict-related signals on the correct Go trials, where cue-locked midfrontal theta power 

increased for the incongruent, Go-to-Avoid cues relative to the congruent, Go-to-Win 

cues. Yet, we did not observe a DBS-induced reduction of these conflict-related neural 

responses, suggesting that motivational conflict detection in the midfrontal cortex was 

not affected by DBS of the nucleus accumbens. We acknowledge that the current results 

do not allow us to disentangle the neural responses to conflict and cue valence, yet 
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previous studies linked the midfrontal theta signals to motivational conflict and not cue 

valence (Cavanagh et al., 2013; Swart et al., 2018). Nevertheless, our data suggest that 

midfrontal theta signals, commonly associated with conflict detection, are unaffected by 

DBS. One potential explanation for why this hypothesized reduction was absent is that 

the motivational bias remains strikingly potent, even following the reduction under DBS. 

Thus, the conflict between the motivational response tendencies and the instrumental 

requirements might remain too persistent to result in reduced neural conflict signals. In 

other words, the reduction in motivational biases by DBS might have been insufficient 

for some of the patients to be picked up by the midfrontal cortex, whereas a larger 

attenuation could have translated in reduced neural conflict signals.

Although our behavioural findings are highly consistent with reduced motivational 

biases due to DBS-induced disruption of striatal input-output coupling, these findings 

could potentially also be explained by enhanced cognitive control over behaviour. 

Striatal DBS does not only affect local, striatal processing, but also affects frontostriatal 

network connectivity (Figee et al., 2013). Thus, the reduced motivational biasing of 

action could potentially also reflect enhanced frontal control due to distal effects of DBS. 

However, if distal, frontal effects of DBS facilitated motivational conflict detection in 

the midfrontal cortex, and thereby facilitated the recruitment of control over behaviour, 

we would expect to see enhanced conflict-related midfrontal signals under DBS. Thus, 

the unaffected midfrontal theta signals suggest that our behavioural DBS observations 

are unlikely to reflect a distal enhancement of frontal control systems. Moreover, DBS 

of the subthalamic nucleus has been shown to hamper cognitive control and to leave 

the midfrontal theta responses unaffected as well (Cavanagh et al., 2011). Future 

studies might address the hypothesis, raised by the current study, that the DBS-induced 

reduction of aversive inhibition reflects (local) processing in subcortical brain regions, 

such as the nucleus accumbens itself, or its interaction with the amygdala.

Next to a disruption of the ongoing neural communication, DBS might have an 

overall inhibitory or excitatory effect depending on the balance of inhibitory (e.g., 

GABAergic) and excitatory (e.g. glutamatergic) neurons that are being stimulated 

(Chiken and Nambu, 2016). We reasoned that an overall excitatory or inhibitory effect 

of nucleus accumbens DBS might have a global, condition-independent effect on 

behavioural activation via changes in activity of the basal ganglia direct and indirect 

pathways. Although DBS numerically increased Go responding and reduced response 

times, these main effects were specifically driven by the Go-to-Avoid cues. Thus, we 

did not observe a convincing effect of DBS on non-selective, global motor activation. 

Nonetheless, nucleus accumbens DBS might have a net excitatory/inhibitory effect on 

local neuronal activity, yet such a potential net effect did not seem to result in overall 

changes in motor excitability.
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Finally, given that we assessed a specific psychiatric population, namely treatment-

refractory OCD patients, this raises the question whether the observed behavioural 

changes during DBS reflect normalization of behaviour. That is, DBS has previously been 

suggested to normalize both behavioural and neural processes in a range of psychiatric 

populations (e.g., Figee et al., 2013; Grubert et al., 2011; Kuhn et al., 2011; McCracken 

and Grace, 2009). However, so far OCD patients have not been compared with matched 

controls on the current experimental paradigm. Thus, future work is needed to elucidate 

to what extent the motivational biases in action are altered in OCD, in order to determine 

whether the observed DBS effects reflect normalization or disruption of the biases.

To conclude, here we assessed for the first time the causal involvement of the 

human ventral striatum in the motivational biasing of action by direct stimulation of 

the nucleus accumbens. Deep brain stimulation attenuated the motivational biases, 

putatively by releasing aversive inhibition of active responses, rather than enhancing 

distal control networks. We did not observe non-selective effects of DBS on behavioural 

activation, suggesting that stimulation of the nucleus accumbens does not affect 

motor excitability per se, but rather attenuates the coupling between motivation and 

behavioural activation.
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The primary aim of this thesis was to provide a deeper understanding of the neurocomputational 

mechanisms i) underlying the motivational biasing of action, and ii) involved in regulating 

dysfunctional motivational drives, allowing for adequate behaviour. Given the theorized role 

of striatal dopamine function in subserving the motivational biasing of action and the role of 

the medial frontal cortex in regulating dysfunctional response tendencies, I focused on these 

aspects specifically. To achieve these aims, we conducted several related experiments in which 

we employed a motivational Go/NoGo task. In the motivational Go/NoGo task, subjects need to 

learn to make Go responses (i.e. button presses) to the Go cues, and NoGo responses (i.e. refrain 

from button presses) to the NoGo cues. By making the correct responses, subjects are rewarded 

for half the cues (Win cues) and avoid punishment for the other cues (Avoid cues). Thus, based 

on the feedback, subjects can then learn the correct response for each cue. With this learning 

phase, we can probe to what extent people are biased towards making active, Go responses 

when pursuing reward and making inactive, NoGo responses when avoiding punishment. The 

learning phase was followed by a transfer phase in a subset of the experiments. During this 

phase, the preceding cues are presented in pairs and subjects needed to select their preferred 

cue out of the pairs. Thus, the transfer phase allowed us to probe the relative cue values after 

learning. In this chapter, I provide a summary of the main findings described in this thesis, 

discuss and integrate the most relevant findings, and highlight the relevance for future studies.

Main findings

Genetic carriers of dopamine-related pathogenic variants express altered subjective 
valuation, but unaffected motivational biases
Catecholamines (particularly dopamine) are strongly linked to motivation, learning and 

behavioural activation (Berridge and Robinson, 1998; Brozoski et al., 1979; Cools et al., 2009; 

Frank et al., 2004; Robbins and Everitt, 2007; Salamone et al., 2005; Schultz et al., 1997). 

Polymorphisms in dopamine-regulating genes have been implicated in these processes as 

well (Frank and Fossella, 2011), yet the cognitive effects of pathogenic variants in the tyrosine 

hydroxylase (TH) gene have never been studied. TH is the enzyme that is responsible for the 

conversion of the amino acid L-tyrosine into dopamine’s direct precursor L-DOPA (Kurian et 

al., 2011), and a pathogenic variant in the TH gene putatively reduces dopamine function by 

limiting the synthesis of L-DOPA. In chapter 2, we assessed for the first time whether carriers 

of a pathogenic variant in the TH genes showed altered motivation and instrumental action. 

To this end, we employed a motivational Go/NoGo learning task, and compared 16 carriers of 

pathogenic TH variants with 20 education- and age-matched controls. In the initial learning 

phase of this task, subjects learnt to make Go or NoGo responses to cues that predict reward 

vs. punishment. In the final transfer phase, the subjects were presented with pairs of cues 

and chose the one they preferred, in the absence of reinforcement. In both the carriers and 
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matched controls, cue valence strongly biased Go/NoGo responding in the learning phase, 

such that subjects made more Go responses when playing for reward (Win cues) than when 

trying to avoid punishment (Avoid cues). This motivational bias in Go/NoGo responding was 

not significantly reduced in the carriers relative to the controls. In contrast, the carriers exhibited 

reduced impact of the valence on their subjective cue valuations during the transfer phase, 

specifically in the context of incongruency between the action requirements and the valence 

(i.e. NoGo-to-Win and Go-to-Avoid cues). These results suggest that the subjective valuation 

is altered in carriers of pathogenic variants in the TH genes, potentially due to catecholamine-

dependent changes in reward expectations, whereas instrumental task performance appears 

unaffected. This pilot study provides a first insight into the cognitive consequences of carrying 

pathogenic variants in the TH gene, focusing on alterations in motivational biases in action and 

the reward valuation system.

Distinct Pavlovian and instrumental catecholaminergic mechanisms drive the motivational 
biases in action
Despite the absence of significant group differences in the motivational bias in chapter 2, 

catecholamines are generally known to modulate the impact of motivational cues on action 

(Taylor and Robbins, 1986, 1984). Such motivational biases have been proposed to reflect cue-

based, ‘Pavlovian’ effects. In chapter 3, we assessed whether motivational biases may also arise 

from asymmetrical instrumental learning of active, Go and passive, NoGo responses following 

reward and punishment outcomes. Given the strong link between catecholamine transmission 

and motivated action, we also aimed to assess the effect of a catecholaminergic manipulation 

on these biases. To this end, a large sample of participants (N=106) performed a motivational 

Go/NoGo learning task twice, once under a catecholamine challenge (methylphenidate - 

MPH) and once on placebo. Based on previous literature of dopaminergic drug effects (Cools 

& D’Esposito, 2011, and Frank & Fossella, 2011 for reviews), we hypothesized that MPH effects 

on motivated action would covary with measures scaling with baseline dopamine function, 

namely working memory span (Cools et al., 2008) and trait impulsivity (Buckholtz et al., 2010). 

We presented an extended version of the motivational Go/NoGo task, including multiple Go 

response options, which allowed us to disentangle the impact of reward and punishment 

outcomes on the instrumental learning of selective responses from non-selective, Pavlovian 

response biasing. Computational analyses showed that motivational biases in Go/NoGo 

responding reflect both Pavlovian and instrumental effects: reward and punishment cues 

promoted generalized (in)action in a Pavlovian manner, whereas reward and punishment 

outcomes enhanced instrumental learning and unlearning of chosen actions. We replicate 

the presence of these cue- and outcome-based biases in chapter 4. These cue- and outcome-

based biases were altered independently by the catecholamine enhancer melthylphenidate. 

Specifically, melthylphenidate modulated Pavlovian response biasing and altered the reward-
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driven diffusion of credit assignment during instrumental learning. Methylphenidate’s effect 

varied across individuals with a putative proxy of baseline dopamine synthesis capacity, 

working memory span, but did not significantly covary with trait impulsivity. Our study 

uncovers two distinct mechanisms by which motivation impacts behaviour, and helps refine 

current models of catecholaminergic modulation of motivated action.

Deep brain stimulation of the ventral striatum releases aversive inhibition of behaviour
The catecholaminergic modulation of motivated action is theorized to rely on dopamine’s 

function in the (ventral) striatum (Dickinson et al., 2000; Hebart and Gläscher, 2015; Lex and 

Hauber, 2008; Taylor and Robbins, 1986, 1984; Wyvell and Berridge, 2000). In chapter 5, we 

assessed the causal role of the ventral striatum in the motivational biasing of action for the first 

time in humans by directly stimulating the nucleus accumbens with deep brain stimulation 

(DBS). In this study, 8 treatment-refractory obsessive-compulsive disorder patients performed 

the motivational Go/NoGo task with concurrent EEG recordings. During this task, DBS was 

switched ON vs. OFF in a cross-over within-subject design. As in all other chapters, the cue 

valences had pronounced impact on the number of active Go responses and the associated 

reaction times, such that subjects made fewer and slower Go responses to punishment (‘Avoid’) 

cues than to reward (‘Win’) cues. DBS of the bilateral ventral striatum attenuated this inhibitory 

influence of punishment cues on reaction times; subjects made relatively faster Go responses 

to the punishment cues during DBS. The corresponding attenuation in the proportion of 

Go responses was highly consistent in direction, yet the medium effect size did not result 

in statistical significance across the group. Rather did DBS seem to attenuate the inhibitory 

influence of punishment cues on the proportion Go responses proportional to the estimated 

DBS impact on the nucleus accumbens. These results causally implicate the human ventral 

striatum in the coupling of motivation and behavioural activation.

Midfrontal network dynamics reflect control over maladaptive motivational biases
In all chapters, the motivational biasing of behaviour was highly consistent: Reward biases 

towards action, punishment towards inaction.  In chapter 3, we established that motivation 

exerts control over behaviour at least partly by eliciting Pavlovian responses, which can either 

match or conflict with instrumental action. We can overcome maladaptive motivational 

influences, putatively through frontal cognitive control (Cavanagh et al., 2013). However, 

the neurocomputational mechanisms subserving this control are unclear; does control 

entail upregulating instrumental systems, downregulating Pavlovian systems, or both? In 

chapter 4, we combined EEG recordings with the extended motivational Go/NoGo learning 

task (N=34), where multiple Go options enabled us to disentangle selective action learning 

from non-selective Pavlovian responses. In chapter 4, we replicated our chapter 3 finding 

that both Pavlovian and instrumental learning mechanisms contribute to the motivational 
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biasing of action, coupling action to reward and inaction to punishment. Midfrontal theta-

band (4-8Hz) activity covaried with the trial-by-trial level of conflict between the prepotent, 

Pavlovian response tendencies and the learned instrumental responses. This conflict-related 

theta signal was associated with reduced Pavlovian biases, rather than reduced instrumental 

learning biases or enhanced specific instrumental responses. This conflict-related theta signal 

was accompanied by phase synchronization of the lateral prefrontal and motor sites to the 

midfrontal site, and these network dynamics predicted the reduction of the Pavlovian biases 

over and above the local, midfrontal power. This work links midfrontal processing to detecting 

Pavlovian conflict, and highlights the importance of network processing in reducing the impact 

of maladaptive, Pavlovian biases. Moreover, this chapter presents the first work incorporating 

trial-by-trial phase synchronization in formal learning models, providing a proof of principle for 

the hypothesis-driven integration of dynamics EEG connectivity measures in computational 

models of behaviour.

Deep brain stimulation of the ventral striatum does not affect conflict-related midfrontal 
oscillatory dynamics
In the patient DBS study reported in chapter 5, we also recorded EEG during task performance 

and assessed if DBS of the bilateral nucleus accumbens altered the conflict-related neural 

responses that we observed in chapter 4. Given that the behavioural effect of DBS appeared 

specific to the Go cues and the number of correct NoGo-to-Win trials was insufficient, we 

restricted the EEG analysis to the Go cues. Independent of DBS, oscillatory theta activity 

increased over the midfrontal cortex for the cues where the Pavlovian response tendencies 

conflicted with the instrumental requirements (Go-to-Avoid > Go-to-Win), consistent with our 

chapter 4 findings. DBS did not alter the putative conflict-related midfrontal theta responses 

across the group. These results suggest that DBS of the bilateral nucleus accumbens locally 

attenuated the motivational biases, rather than enhancing (distal) frontal control systems.

Interpretation of the findings

The motivational biasing of action is a highly robust phenomenon as demonstrated by the 

multiple experiments in this thesis. I assessed a range of populations (healthy students, 

obsessive-compulsive disorder patients, carriers of pathogenic variants in the TH genes, and 

a heterogeneous control population). Although there was considerable variability between 

subjects in the strength of the motivational biases, all tested populations consistently showed 

the motivational biases at least to some extent. Moreover, we consistently observed effects 

of motivational valence on both the proportion of Go responses and reaction times across 

different versions of the task (e.g., implicit vs. explicit cue valences, single vs. multiple Go 

response options, 70-80% feedback contingencies). These motivational effects on choice and 
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RT were complementary in nature (in contrast to a trade-off), as subjects made both faster and 

more Go responses when playing for reward than when preventing punishment. In sum, the 

motivational Go/NoGo task proved to be a robust tool to uncover these persistent biases in 

action.

Several of our findings were in line with a role for striatal dopamine in the motivational 

biasing of action. Based on prior evidence from theoretical and empirical work (Collins and Frank, 

2014) indicating that bursts in striatal dopamine release elicited by reward cues potentiate the 

basal ganglia direct Go pathway, we predicted that reward cues would facilitate non-selective 

behavioural activation. Additionally, based on the hypothesis that bursts in striatal dopamine 

release elicited by reward outcomes potentiate recently activated connections in the same 

direct Go pathway, we put forward the novel hypothesis that reward outcomes would facilitate 

selective learning of the performed Go response. Comparable, yet opposite biases were 

hypothesised for punishment cues and outcomes, coupling punishment to inactive, NoGo 

responses. In chapter 3 and chapter 4 we found the first behavioural evidence for biased 

(outcome-based) instrumental learning in addition to the (cue-based) Pavlovian response 

biasing. In the other chapters we did not disentangle these cue- and outcome-based biases, as 

the paradigms did not include multiple Go response options (making it harder to disentangle 

selective instrumental learning from non-selective Pavlovian activation). Thus, we should be 

cautious to attribute the observed motivational biases in chapter 2 and chapter 5 to either 

Pavlovian or instrumental learning biases alone. However, in most experiments we made the 

cue valences explicit by giving the cues a green border (Win cues) or a red border (Avoid cues), 

and with these explicit cue valences we always observed motivational biases already on the 

first trial. Therefore, we can be quite confident that the motivational biases in chapter 2 and 

chapter 5 rely at least partly on Pavlovian mechanisms, but we should be cautious to either 

exclude (or take for granted) the contribution of instrumental learning biases. Altogether, the 

consistent observations of motivational biases in action, and the complementary cue- and 

outcome-based mechanisms, supported our novel behavioural hypotheses based on known 

striatal dopamine function.

Next to establishing the complementary contribution of Pavlovian and instrumental 

mechanisms in the motivational biases, other findings supported current views of striatal 

dopamine function described above and throughout this thesis. In chapter 3 we demonstrated 

that challenging the dopamine system with the dopamine reuptake blocker methylphenidate 

modulated both the Pavlovian and instrumental biases, thereby causally linking catecholamine 

function to these Pavlovian and instrumental mechanisms. Furthermore, in chapter 5 we 

showed that disrupting ventral striatal processing with deep brain stimulation reduced the 

behavioural inhibition elicited by aversive cues. The effect of striatal DBS was remarkably 

consistent for reaction times and the proportion Go responses, but did not reach significance for 

the Go responses in the current sample. These findings from chapter 3 and chapter 5 provided 
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causal evidence for the role of dopamine and the ventral striatum in the instrumental and 

Pavlovian biases, yet in chapter 2 we did not observe a significant group difference between 

dopamine-related genetic carriers of pathogenic TH variants and matched controls. Note, 

however, that there was a small effect size for reduced motivational biases on the NoGo cues in 

the carriers, so we also cannot conclusively infer an absence of group differences. The carriers 

did express a reduced influence of the cue valences on their subjective cue preferences in the 

transfer phase, linking the pathogenic TH variants to subtle alterations in subjective valuation, 

in line with dopamine’s theorized role in reward expectations. This pattern of findings might 

indicate that the transfer phase is more sensitive to subtle changes in the dopamine system, 

potentially reflecting the accumulated dopamine-dependent learning from reward prediction 

errors. In contrast, subjects might be able to compensate in the learning phase by recruiting 

working memory or additional prefrontal functions, particularly in the simple task version with 

four cues, making the learning phase relatively less sensitive to subtle, chronic changes in the 

dopamine system. Such relative task sensitivities would explain why the carriers of pathogenic 

TH variants showed altered subjective cue preferences, but unaffected motivational biases in 

action (chapter 2). Moreover, methylphenidate affected the motivational biases proportional 

to the putative dopamine-proxy working memory capacity, whereas this working memory 

dependency was absent under placebo (chapter 3), possibly illustrating the lower sensitivity 

to chronic states and higher sensitivity to pharmacological challenges. Unfortunately, our 

pharmacological study did not contain a transfer phase, impeding us to directly compare the 

dopamine sensitivity of the learning and transfer phase within a healthy population.

Finally, I assessed the role of the medial frontal cortex (MFC) in reducing maladaptive 

motivational biases. In chapter 4 we particularly linked MFC theta activity to the amount of 

conflict between the Pavlovian and instrumental system, suggesting a role for the MFC in the 

detection of conflict between the response systems. In chapter 5, we replicated part of these 

findings by observing increased MFC theta responses to Pavlovian conflict (on the Go cues) 

within the sample of DBS patients. Yet, the reduction in motivational response tendencies 

under DBS was not accompanied by altered MFC theta signals, resembling the unaffected MFC 

theta responses under STN DBS in the presence of behavioural changes in cognitive control 

(Cavanagh et al., 2011). These combined findings were strikingly consistent with my previous 

work (van Driel et al., 2015), linking MFC theta responses to the anticipation and detection 

of classic response conflict (i.e. where stimulus-induced response tendencies conflict with 

instrumental task requirements). Thus, the MFC might be responsible for detecting conflict 

between multiple activated response systems, irrespective of the identity (e.g., motivational, 

affective, instrumental) of the sources that are causing the conflict. Our results showed that 

these MFC theta responses were specifically related to the reduction of maladaptive Pavlovian 

biases, and did not seem to relate to changes in the instrumental system. Thus, we reasoned 

that the MFC might detect conflict in order to halt prepotent responses, potentially by raising 
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the decision threshold , and allow for the slower, more adaptive systems to take over (Aron et 

al., 2016; Cavanagh et al., 2011; Cavanagh and Frank, 2014; Cohen, 2014; Frank et al., 2015). 

Motor and lateral prefrontal sites synchronized with the MFC, which was even more directly 

related to the reduction of maladaptive Pavlovian biases, suggesting a role for network-wide 

communication in the regulation of maladaptive response tendencies. We could not link the 

MFC theta responses to (reductions in) the instrumental learning biases, which might be 

because these learning biases do not conflict with other response systems. At least, it seems 

redundant to assume that we have both a biased and unbiased instrumental system, which 

would independently track learned action values and would then conflict with each other. 

Taken together, the MFC does not seem to reduce motivational biases per se, but rather 

detects and signals conflict between activated response systems in order to allow for adaptive 

systems to take control.

Limitations

The work described in this thesis has provided valuable insight into the neurocomputational 

mechanisms subserving the motivational biasing of action on the one hand, and the resolution 

of maladaptive biases on the other hand. These studies, however, also had limitations that 

should be considered when interpreting the work.

First of all, the specificity of our findings: I linked the results from the TH genetic study 

(chapter 2) and the methylphenidate study (chapter 3) to theoretical views of dopamine 

function, yet other catecholamines (i.e. noradrenaline and adrenaline) might have played a 

role as well, as the TH enzyme and methylphenidate non-specifically affect the catecholamine 

system. Moreover, methylphenidate was administered systemically and was not restricted to 

the striatum, nor are the consequences of the TH pathogenic variants. Similarly, I linked our 

deep brain stimulation findings (chapter 5) to ventral striatal functioning, yet other structures 

might be also modulated by the stimulation (e.g., surrounding subcortical structures, or 

cortical structures via passing white matter tracts).

Second, the TH genetic study (chapter 2) was observational in the sense that we did 

not randomly assign subjects to the groups. This observational nature is inherent to human 

genetics studies, yet consequently the groups might differ on other relevant factors, which 

might also explain the observed group differences. I assumed that the groups would differ 

in dopamine synthesis as a direct consequence of the pathogenic genetic variant, and that 

the observations could be attributed to the altered dopamine function. However, we did not 

measure dopamine synthesis, and therefore the extent of dopamine reduction in the carriers 

is unknown.

Third, DBS provides a valuable tool for assessing the causal involvement of neural 

structures, but for ethical reasons we cannot employ DBS in healthy populations. Therefore, 
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the DBS study (chapter 5) involved a psychiatric population, and we do not know to what 

extent the mechanisms of actions are similar in obsessive-compulsive patients as in a healthy 

population.

Finally, the localization of our EEG results (chapter 4 and chapter 5) is limited, and 

future studies (for example employing fMRI) are needed to provide more confidence in the 

localization of the EEG results. To address the localization of our EEG findings and assess striatal 

signals in a healthy popilation, we have set up a follow-up study (not covered in this thesis) in 

which we record simultaneous EEG and fMRI.

Future outlook

The work reported in this thesis presents several research opportunities for future 

neuroscientific studies. First, having established the complementary contribution of Pavlovian 

and instrumental mechanisms to the motivational biases, a first step would be to further 

disentangle the neural underpinnings: Do the same neural structures underpin the Pavlovian 

and instrumental mechanisms, or do they rely on different neural pathways? Are these neural 

structures purely situated in the basal ganglia? Second, the relation between network-wide 

connectivity and reduced maladaptive Pavlovian biases invites us to optimize the localization 

of the results: Does the lateral prefrontal connectivity reflect connectivity with the dorsolateral 

prefrontal cortex? To what extent is the connectivity restricted to the lateral prefrontal and 

motor sites? Does the MFC also signal to subcortical sites? Finally, and perhaps most exciting, 

how do the different structures interact with each other at the neural level? Does the MFC 

receive input from the basal ganglia and only signal conflict to other task-relevant regions, or 

does the MFC also modulate activity within the basal ganglia? How is control subsequently 

implemented in the target structures, i.e. what do the specific computational implementations 

look like? We have started to address these questions in our combined EEG-fMRI study, and 

with these questions I hope to inspire and invite other researchers to follow up on our studies 

and extend our line of work.

On a higher level, the gained insights into the biased instrumental learning system has 

potential implications for behavioural modification, relevant to e.g. psychological treatments 

and pedagogy. For example, it might be more effective to motivate students to study for 

good grades (positive outcomes) than for avoiding failure (avoiding negative outcomes). 

Such framing effects are known to have strong impact on behaviour (Kahneman and Tversky, 

1979), and our work refines these framing effects by showing the reliance on active vs. inactive 

behaviour. Moreover, future research could assess the implementation in psychological 

treatment for example of addiction behaviour. Here our findings suggest, albeit very 

speculatively, that it might be more effective to encourage someone to take alternative actions 

(in order to get more positive outcomes), rather than to encourage someone to refrain from 
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their addiction behaviour per se, as we might be better in attributing the positive outcomes to 

our alternative behaviours than to refraining from our addiction behaviour. Here our findings 

are of particular relevance, as so far it has been assumed that our motivational biases purely 

arise from a Pavlovian system, whereas we have demonstrated that classes of (in)action are 

better learned from certain outcomes.

Finally, the theorized role of the catecholamine system and of frontostriatal functioning 

might help to improve our clinical understanding. That is, the reliance of the motivational 

biases on the catecholamine system can help to better understand, and potentially even 

predict, cognitive side effects of dopaminergic treatment. Our pharmacological study thereby 

emphasizes once more the importance of taking into account individual differences in 

pharmacological treatment. Similarly, the reliance of the biases on frontostriatal functioning is 

relevant for a better understanding of psychiatric disorders in which frontostriatal functioning 

is affected. Moreover, it has been suggested that either too much or too little Pavlovian biases 

are at the heart of a number of psychiatric disorders (Garbusow et al., 2016; Geurts et al., in 

prep.; Heinz et al., 2016; Watson et al., 2014), where our findings further suggest that these 

symptoms could arise from too much or too little instrumental biases as well.

Concluding remarks

Motivation is a hallmark of human cognition and throughout this thesis I have shown that 

motivation strongly drives our behaviour. In many cases motivation is beneficial for the 

realization of our goals, as it generally facilitates the behaviour that is required for achieving 

those goals. In this work I addressed the neurocomputational mechanisms that underlie how 

our motivation can irrationally drive our actions on the one hand, and the neural mechanisms 

that allow us to reduce the impact of irrational motivational drives when these drives become 

dysfunctional. Here, I demonstrated for the first time the dissociable contribution of Pavlovian 

and instrumental mechanisms to the well-established motivational biases in action that 

couple reward to active responses and punishment to inaction. I theoretically linked both 

these Pavlovian and instrumental mechanisms to striatal dopamine function, and established 

the susceptibility of these mechanisms to a catecholamine challenge (methylphenidate) 

and disruption of the striatum (deep brain stimulation). I related the medial frontal cortex 

particularly to reduced impact of the Pavlovian biases, but not the instrumental learning biases, 

when the motivational biases became dysfunctional. I propose that the medial frontal cortex 

serves as a hub, detecting and signalling conflict between the Pavlovian and instrumental 

system to recruit control over the dysfunctional Pavlovian biases. To conclude, with this work 

I have shed light on neurocomputational mechanisms related to acquiring and overcoming 

motivational biases in action.
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Inleiding

We maken elke dag enorm veel keuzes. Volgens Google maar liefst 35.000! Dit zijn natuurlijk niet 

allemaal levensbepalende keuzes als “Wat voor werk zal ik doen na mijn promotie?”, maar ook simpelere 

keuzes als “Zal ik wel of geen koffie nemen?”. We kunnen deze keuzes niet allemaal overdenken en 

zullen soms (onbewust) moeten terugvallen op vuistregels die de keuzes makkelijker voor ons 

maken. Eén zo’n belangrijke vuistregel maakt gebruik van onze verwachtingen: Zo zijn we geneigd 

actie te ondernemen als we een prettige uitkomst verwachten, terwijl we juist terughoudend zijn 

als we een onprettige uitkomst verwachten (zie Figuur 1). Deze vuistregel is vaak heel handig en 

helpt ons meestal goede keuzes te maken. Denk bijvoorbeeld aan het opeten (actie ondernemen) 

van appetijtelijk eten (prettige uitkomst) en het laten staan (terughoudend zijn) van bedorven voedsel 

(onprettige uitkomst). Deze vuistregel is echter niet altijd handig. Soms moeten we bijvoorbeeld 

wachten met eten (ons inhouden) als de maaltijd nog in de oven staat en kunnen we het bedorven 

voedsel maar beter weggooien (actie ondernemen). In deze gevallen werkt onze vuistregel ons dus 

tegen. In mijn proefschrift heb ik enerzijds onderzocht hoe onze hersenen ervoor zorgen dat deze 

specifieke vuistregel tot stand komt en anderzijds hoe we deze vuistregel kunnen onderdrukken 

wanneer deze ons tegenwerkt.

Figuur 1. (On)pretttige verwachtingen sturen de activatie van ons gedrag. 
Onze verwachtingen over prettige vs. onprettige uitkomsten hebben een tegenovergestelde werking op 
de activatie van ons gedrag. Zo zetten prettige verwachtingen ons veelal aan tot het nemen van actie en 
zo laten we ons door negatieve verwachtingen juist vaak inhouden. Deze vuistregel maakt het makkelijk 
om bijvoorbeeld appetijtelijk voedsel op te zoeken en weg te blijven van bedorven voedsel. Deze 
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makkelijke situaties zijn boven in kleur weergegeven. Het koppelen van actie aan prettige uitkomsten en 
nietsdoen aan onprettige uitkomsten is vaak heel nuttig, maar in sommige gevallen kunnen we beter het 
tegenovergestelde gedrag vertonen. Zo kan je soms een vies huis voorkomen door het bedorven voedsel 
weg te gooien en wordt een lasagne nog lekkerder als je voldoende lang wacht. Onze vuistregel maakt 
deze situaties moeilijker (aangegeven in zwart-wit).

Het onderzoek

Om de vuistregel te onderzoeken, heb ik met mijn collega’s een computerspel ontwikkeld waarin 

we bovenstaande situaties in een spelvorm nabootsen (zie Figuur 2). In dit computerspel tonen 

we afwisselend positieve afbeeldingen die aangeven dat de speler geld kan winnen (prettige 

uitkomst) en negatieve afbeeldingen die aangeven dat de speler geld kan verliezen (onprettige 

uitkomst). Voor de helft van de positieve afbeeldingen moet de speler op een toets drukken (actie 

ondernemen) om het geld daadwerkelijk te krijgen, terwijl de speler voor de andere positieve 

afbeeldingen juist niet moet drukken (zich inhouden) om het geld te krijgen. Ditzelfde principe 

geldt ook voor de negatieve afbeeldingen: Voor de helft van de negatieve afbeeldingen moet 

de speler op een toets drukken om geen geld te verliezen, oftewel om de onprettige uitkomst te 

voorkomen, terwijl de speler voor de andere negatieve afbeeldingen juist niet moet drukken om 

niet te verliezen. We vertellen de spelers niet wat zij idealiter voor elke afbeelding zouden moeten 

doen en dus moeten de spelers er tijdens het spel zelf achter komen wat de beste reacties zijn.

Figuur 2. Het computerspel.
In ons computerspel krijgen deelnemers verschillende positieve en negatieve afbeeldingen te zien 
waarvoor ze óf op een knop moeten drukken (actie ondernemen) óf niets moeten doen (zich inhouden). 
Voor de positieve afbeeldingen (met groene rand) kunnen de deelnemers geld winnen als ze de juiste 
reactie geven, terwijl ze voor de negatieve afbeeldingen (met rode rand) dan juist voorkomen dat ze geld 
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verliezen. De deelnemers moeten tijdens het spel zelf leren wat de beste reactie is voor elke afbeelding. 
Hoe beter de deelnemers het spel spelen, hoe meer geld ze winnen. Met dit spel kunnen we de vuistregel 
meten, oftewel in hoeverre de deelnemers geneigd zijn om actie te ondernemen als ze geld kunnen 
verdienen en zich inhouden als ze geld kunnen verliezen.

Ik heb dit computerspel gebruikt in vier verschillende onderzoeken die ik rapporteer in 

hoofdstuk 2 tot en met 5 van dit proefschrift. In elk van deze onderzoeken zagen we dat de 

deelnemers geneigd waren om actie te ondernemen voor de positieve afbeeldingen en zich 

juist inhielden voor de negatieve afbeeldingen. Voor de helft van de positieve en negatieve 

afbeeldingen hielpen deze neigingen de deelnemers dus inderdaad om de beste keuze te 

maken. Voor de andere afbeeldingen zorgden de neigingen er echter voor dat de deelnemers 

juist minder goede keuzes maakten. Met behulp van ons computerspel konden we de 

vuistregel dus blootleggen en verder onderzoeken. In de volgende sectie bespreek ik beknopt 

en per overkoepelend onderwerp wat deze onderzoeken inhielden en wat de bijbehorende 

bevindingen waren.

Bevindingen

Automatisme of aangeleerd?
In dit proefschrift hebben we onderzocht of de vuistregel berust op een automatisch proces 

of dat de vuistregel ook kan ontstaan door een leerproces (hoofdstuk 3 en 4). Veelal werd er 

namelijk vanuit gegaan dat de vuistregel op een automatisch proces berust; dat de vuistregel 

als het ware zo is vastgelegd in onze hersenen. Mijn collega’s en ik redeneerden echter dat 

de vuistregel ook zou kunnen ontstaan doordat mensen verschillend leren van prettige en 

onprettige uitkomsten. Om deze verschillende verklaringen te kunnen onderscheiden en 

toetsen, ontwikkelden we wiskundige modellen. Uit deze modellen bleek dat de vuistregel 

voor een deel automatisch gebruikt werd, dus zelfs al wanneer de deelnemers de afbeeldingen 

voor de eerste keer zagen. Met behulp van de modellen toonden we echter voor het eerst aan 

dat de deelnemers daarnaast inderdaad verschillend leerden van de uitkomsten. Zo schreven 

de deelnemers positieve uitkomsten sneller toe aan hun acties en waren ze juist minder goed 

in het wijten van negatieve uitkomsten aan hun inactiviteit. Hierdoor hielden deelnemers zich 

vaker in ook al hadden zij hierdoor eerder geld verloren. Uit deze bevindingen konden we 

concluderen dat de vuistregel dus deels over tijd wordt aangeleerd, wat een vernieuwend 

inzicht in het veld was.

Neurochemische modulatie van de vuistregel
In hoofdstuk 2 en 3 hebben we het verband onderzocht tussen de vuistregel en een groep 

chemische stoffen die worden gebruikt voor communicatie in de hersenen: Catecholamines. 

Catecholamines zijn belangrijk voor het verwerken van beloningen, maar ook voor het 
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ondernemen van actie. Allereerst onderzochten we het verband tussen catecholamines en 

de vuistregel door de catecholamine-huishouding te veranderen (hoofdstuk 3). Hiervoor 

lieten we dezelfde gezonde studenten eenmaal ons computerspel spelen na het innemen van 

catecholamine-beïnvloedende medicatie en eenmaal na placebomedicatie. We vergeleken 

vervolgens hun gedrag na de catecholamine-beïnvloedende medicatie met hun eigen gedrag 

na placebomedicatie. Zo zagen we dat de catecholamine-beïnvloedende medicatie niet 

bij iedereen hetzelfde effect had. Het effect hing af van een maat die samenhangt met de 

natuurlijke catecholamine aanmaak, namelijk het kortetermijngeheugen (‘werkgeheugen’). Bij 

deelnemers met een goed kortetermijngeheugen, die veelal van nature meer catecholamines 

aanmaken, versterkte de medicatie de vuistregel; zij gingen vaker actie ondernemen als ze 

geld konden winnen en deden vaker niets als ze geld konden verliezen. Deze vuistregel was 

dus nuttig voor de helft van de afbeeldingen, maar werkte tegen voor de andere helft van 

de afbeeldingen. Bij de deelnemers met een minder goed kortetermijngeheugen, die veelal 

minder catecholamines aanmaken, had de catecholamine-beïnvloedende medicatie het 

tegenovergestelde effect en verzwakte de invloed van de vuistregel; zij deden vaker niets als 

ze geld konden winnen en gingen vaker actie ondernemen als ze geld konden verliezen. Deze 

bevindingen suggereerden dus dat het effect van de catecholamine-beïnvloedende medicatie 

op de vuistregel afhing van de natuurlijke catecholamine aanmaak.

Vervolgens onderzochten we het verband tussen catecholamines en de vuistregel ook 

door een specifieke genetische testgroep te vergelijken met een controlegroep (hoofdstuk 

2). De genetische testgroep bestond uit mensen die een genetische samenstelling hebben 

die de aanmaak van catecholamines beperkt. De controlegroep bestond uit een vergelijkbare 

groep zonder afwijkende genetische samenstelling. Tegen onze verwachtingen in, zagen we 

geen aantoonbare verschillen tussen de testgroep en de controlegroep in de mate waarop 

zij de vuistregel uitten. Samengenomen hebben we het verband tussen catecholamines en 

de vuistregel dus met name kunnen laten zien nadat mensen catecholamine-beïnvloedende 

medicatie kregen, maar niet als zij geen medicatie kregen.

Hersengebieden en de vuistregel
Catecholamines zijn onder meer werkzaam in het striatum, een evolutionair gezien ‘oud’ 

hersengebied (zie Figuur 3). In dit hersengebied worden beloningen verwerkt en vindt ook het 

selecteren van acties plaats. We denken daarom dat catecholamines de vuistregel beïnvloeden 

via het striatum. We onderzochten de relatie tussen het striatum en de vuistregel in hoofdstuk 

5. Hiervoor hadden we een bijzondere onderzoeksgroep, namelijk Spaanse patiënten die 

diepe hersenstimulatie in het striatum kregen als behandeling tegen obsessief-compulsieve 

stoornis. Deze patiënten speelden ook ons computerspel terwijl ze afwisselend wel of geen 

diepe hersenstimulatie ontvingen. Deze patiënten gebruikten dezelfde vuistregel als onze 

gezonde deelnemers: zij ondernamen sneller en vaker actie voor de positieve afbeeldingen en 
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zij ondernamen langzamer en minder actie voor de negatieve afbeeldingen. Deze vuistregel 

werd afgezwakt wanneer we het striatum verstoorden met de diepe hersenstimulatie: de 

patiënten gingen relatief sneller actie ondernemen voor de negatieve afbeeldingen wanneer 

dat inderdaad de bedoeling was. Ze werden dus beter in het spel doordat ze beter hun 

vuistregel konden negeren als dat nodig was! Dankzij deze bijzondere patiëntengroep konden 

we dus laten zien dat het striatum belangrijk is voor het tot stand komen van de vuistregel. 

Figuur 3. Midfrontale cortex en het striatum.
Schematisch zijaanzicht van een brein. De linker lijn wijst de evolutionair gezien ‘jongere’ midfrontale cortex 
aan. Het blauwe gebied weerspiegelt het evolutionair gezien ‘oudere’ striatum, dat diep in de hersenen ligt. 
Afbeelding aangepast van iKnowledge (clinicalgate.com/the-basal-ganglia).

Onderdrukking van de vuistregel
Tot slot heb ik in dit proefschrift onderzocht hoe we de invloed van de vuistregel kunnen 

beperken wanneer deze ons niet helpt om de goede keuze te maken (hoofdstuk 4 en 5). Denk 

eraan, de vuistregel helpt in veel gevallen om goede keuzes te maken, maar soms is het nodig 

om het tegenovergestelde te doen. We hebben gekeken of in deze situaties de vuistregel werd 

ingeperkt door de frontale cortex (zie Figuur 3). De frontale cortex is een evolutionair gezien 

‘nieuw’ hersengebied, dat belangrijk is voor ‘hogere’ cognitieve functies zoals het monitoren 

en beheersen van gedrag. Om de frontale cortex te onderzoeken hebben we hersenactiviteit 

gemeten met elektro-encefalografie (EEG) terwijl de deelnemers ons computerspel speelden. 

Specifieke trage hersengolven werden sterker wanneer deelnemers doorhadden dat ze hun 

vuistregel niet moesten volgen. We maten deze hersengolven over de midfrontale cortex, een 

subgebied van de frontale cortex. De midfrontale cortex bleek echter niet in isolatie te werken, 

maar communiceerde met andere hersengebieden die betrokken waren bij het uitvoeren van 

het computerspel. De mate van communicatie tussen deze hersengebieden bleek het beste te 

voorspellen of de deelnemers in staat waren het tegenovergestelde gedrag aan de vuistregel 

te vertonen wanneer dat nodig was.

Oplettende lezers zullen zich wellicht herinneren dat we in hoofdstuk 5 naast EEG 

ook nog diepe hersenstimulatie hebben gebruikt en zich afvragen of dat invloed had op de 
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midfrontale hersengolven. Dat was niet het geval. Hieruit konden we opmaken dat de diepe 

hersenstimulatie met name het tot stand komen van de vuistregel in het striatum verminderde 

en dat de diepe hersenstimulatie niet zozeer van invloed was op de frontale controlesystemen.

Conclusie

Samengevat heb ik in dit proefschrift vier onderzoeken gepresenteerd met verschillende 

invalshoeken naar dezelfde vraag: hoe zorgen onze hersenen ervoor dat een specifieke 

vuistregel tot stand komt, oftewel hoe zorgen onze hersenen ervoor dat prettige uitkomsten 

ons aanzetten tot actie en onprettige uitkomsten ons doen inhouden? Allereerst heb ik laten 

zien dat de vuistregel deels tot stand komt door leerprocessen en deels door automatische 

processen. Daarnaast heb ik aangetoond dat het veranderen van de catecholamine-

huishouding van invloed is op de vuistregel en dat het verstoren van het striatum de vuistregel 

vermindert. Deze bevindingen ondersteunen dat catecholamines en het striatum ervoor 

zorgen dat de vuistregel tot stand komt. Anderzijds heb ik onderzocht hoe we van onze 

vuistregel kunnen afwijken indien het tegenovergestelde gedrag gewenster is. Hiervoor heb 

ik laten zien dat specifieke langzame hersengolven over de midfrontale cortex toenemen als 

mensen opmerken dat er een mismatch is tussen de vuistregel en het gewenste gedrag. De 

mate van communicatie tussen de midfrontale cortex en andere betrokken hersengebieden 

was vervolgens belangrijk voor het daadwerkelijk kunnen vertonen van het gewenste 

gedrag. Met deze inzichten hoop ik bij te dragen aan mijn wetenschappelijke veld en collega-

onderzoekers te inspireren om onze onderzoekslijn te vervolgen.
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